Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

500 kV输电铁塔力学失效分析和失效预测研究

来源:电工电气发布时间:2024-05-08 14:08 浏览次数:370

500 kV输电铁塔力学失效分析和失效预测研究

陈易飞1, 阳林1, 黄欢2, 吴建蓉2
(1 华南理工大学 电力学院,广东 广州 510640;
2 贵州电网电力科学研究院,贵州 贵阳 550000)
 
    摘 要:针对中国南方地区典型覆冰线路,采用有限元仿真方法建立了 500 kV 输电铁塔的仿真模型,开展了不均匀覆冰下不同覆冰厚度和不同风速等工况的力学特性分析,统计得到铁塔的薄弱点位置规律。基于薄弱点构件的轴向应力和节点位移,开展输电铁塔力学失效分析,并通过基于 BP 神经网络的输电铁塔力学失效预测方法研究,实现对输电铁塔最大轴向应力和节点位移的预测。结果表明:相同风速和基本冰厚下,长、短档距侧冰厚值相差越大,薄弱点构件轴向应力和节点位移值越大;随着覆冰厚度的增加,风速对节点位移的影响更大;相同冰风荷载下,长档距侧重覆冰对轴向应力和节点位移的影响要大于短档距侧重覆冰;不均匀覆冰工况下,500 kV 输电铁塔的薄弱点位置主要分布在输电铁塔塔头地线支架处、上下曲臂连接处、瓶颈处以及铁塔的塔身处。该预测方法可以实现对其最大轴向应力和节点位移的有效预测,为重冰区输电铁塔的失效预测提供了参考。
    关键词: 覆冰线路;输电铁塔;失效分析;失效预测
    中图分类号:TM726 ;TM753     文献标识码:A     文章编号:1007-3175(2024)04-0017-10
 
Study on Mechanical Failure Analysis and Failure Prediction of
500 kV Transmission Tower
 
CHEN Yi-fei1, YANG Lin1, HUANG Huan2, WU Jian-rong2
(1 School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China;
2 Guizhou Power System Research Institute, Guiyang 550000, China)
 
    Abstract: This paper focuses on typical icing transmission lines in southern China and uses finite element simulation method to establish the simulation model of 500 kV transmission towers. The mechanical characteristics of different icing thicknesses and wind speeds under uneven icing working conditions are analyzed, and the weak point position rules of the towers are statistically obtained. Based on the axial stress and nodal displacement of weak point components, the mechanical failure analysis of the transmission tower was carried out, and the prediction of the maximum axial stress and nodal displacement of the transmission tower was realized through the research of the transmission tower mechanical failure prediction method based on BP neural network. The study results show that the greater the difference between the ice thickness values of the long and short pitch sides, the greater the axial stress and node displacement values of the weak point members under the same wind speed and basic ice thickness. As the thickness of ice cover increases, the influence of wind speed on node displacement becomes greater. Under the same ice wind load, the influence of longpitch heavy icing on axial stress and nodal displacement is greater than that of shortpitch heavy icing. Under uneven icing working conditions, the weak points position of 500 kV transmission towers are mainly distributed at the ground wire support of the tower head, the connection between the upper and lower curved arms, the bottleneck, and the body of the tower. The prediction method can effectively predict the maximum axial stress and nodal displacement providing a reference to the failure prediction of transmission towers in heavy ice areas.
    Key words: icing transmission line; transmission tower; failure analysis; failure prediction
 
参考文献
[1] WEN Y, CHEN Y, WU J, et al.Research on Risk Assessment and Suppression Measures for Ice-Shedding on 500 kV Compact Overhead Lines[J].Enegies,2022,15 :8005.
[2] YANG Lin, CHEN Yifei, HAO Yanpeng, et al.Detection Method for Equivalent Ice Thickness of 500 kV Overhead Lines Based on Axial Tension Measurement and Its Application[J].IEEE Transactions on Instrumentation and Measurement,2023,72 :1-11.
[3] 陈易飞,文屹,毛先胤,等. 基于 COMSOL 和 MATLAB 的输电铁塔力学仿真界面设计[J] . 电力大数据,2023,26(10) :75-84.
[4] YANG Lin , CHEN Yifei , MEI Lulu,et al.Prediction method for response characteristics parameters of isolated-span overhead lines after ice-shedding based on finite element simulation and machine learning[J].Electric Power Systems Research,2024,229 :110141.
[5] 文屹,陈易飞,毛先胤,等.500 kV 输电铁塔覆冰风险评估与加固措施[J] . 电力工程技术,2023,42(2) :250-257.
[6] YANG L, HE S J, CHEN Y F, et al.Effect of droplet deformation on discharge at icicle tip of ice-covered insulators during melting period[J].Electric Power Systems Research,2022,213 :108723.
[7] YAO Chenguo, MAO Feng, XU Daolin, et al.Mechanical Properties of Transmission Tower-Line System in Non-Uniformly Iced Condition[J]. HighVoltage Engineering,2011,37(12) :3084-3092.
[8] YANG Lin, HU Zhihao, NIAN Lupeng, et al.Prediction on freezing fraction and collision coefficient in ice accretion model of transmission lines using icing mass growth rate [J] . IET Generation , Transmission & Distribution,2021(2) :1-12.
[9] DUCLOUX H, NYGAARD B E K.Ice loads on overhead lines due to freezing radiation fog events in plains[J].Cold Regions Science and Technology,2018,153 :120-129.
[10] ZHANG J, XIE Q.Failure analysis of transmission tower subjected to strong wind load[J].Journal of Constructional Steel Research,2019,160 :271-279.
[11] ALMINHANA F, MASON M, ALBERMANI F.A compact nonlinear dynamic analysis technique for transmission line cascades[J].Engineering Structures,2018,158 :164-174.
[12] FU Xing, LI Hongnan, WANG Jia.Failure analysis of a transmission tower subjected to combined wind and rainfall excitations[J].Structural Design of Tall and Special Building,2019,28(10) :e1615.
[13] FU Xing, LI Hongnan, LI Gang, et al.Fragility analysis of a transmission tower under combined wind and rain loads [J] . Journal of Wind Engineering and Industrial Aerodynamics,2020,199 :104098.
[14] XIE Qiang , SUN Li . Failure mechanism and retrofitting strategy of transmission tower structures under ice load [J] . Journal of Constructional Steel Research,2012,74 :26-36.
[15] XIE Qiang, SUN Li.Experimental study on the mechanical behavior and failure mechanism of a latticed steel transmission tower[J].Journal of Structural Engineering,2013,139(6) :1009-1018.
[16] NIAN Lupeng, YANG Lin, HAO Yanpeng, et al.Stress analysis of key components of 110 kV straight tower in heavy ice area under uniform ice coating[J].Smart Power,2020,48(1) :15-22.
[17] ZHANG Hourong, ZHANG Li, YANG Yueguang, et al.Research on failure warning technology of tension tower under uniform working condition[J].Southern Power Grid Technology,2018,1(12) :33-40.
[18] WANG Yan, DU Zhiye, RUAN Jiangjun.Study on risk assessment of high voltage overhead transmission lines under icing conditions[J].Power System Protection and Control,2016,44(10) :84-90.
[19] ZHOU Yongqiang, SHENG Qian, CHEN Jian, et al.The failure mode of transmission tower foundation on the landslide under heavy rainfall: A case study on a 500 kV transmission tower foundation on the Yanzi landslide in Badong, China[J].Bulletin of Engineering Geology and the Environment,2022,81 :125.
[20] XIE Qiang, ZHANG Jian.Experimental study on failure mode and retrofitting method of latticed transmission tower[J].Engineering Structures,2021,226 :111365.
[21] MA Yi, PAN Hao, QIAN Guochao, et al.Prediction of Transmission Line Icing Using Machine Learning Based on GS-XG Boost[J].Journal of Sensors,2022,5 :1-9.
[22] YANG Hongming, HUANG La, HE Chunfang, et al.Probabilistic Prediction of Transmission Line Fault Resulted from Disaster of Ice Storm[J].Power System Technology,2012,36(4) :213-218.
[23] ZHENG X W, LI H N, YANG Y B, et al.Damage risk assessment of a high-rise building against multihazard of earthquake and strong wind with recorded data[J].Engineering Structures,2019,200 :109697.
[24] ZHU Ruiguang, LÜ Dagang.Copula-based correlation analysis of intensity measures of mainshockaftershock ground motions[J].Engineering Mechanics,2019,36(2) :114-123.
[25] LIU Kun, BAI Qiang.Design and Optimization on 500 kV Cuo Tower and JG Type Tension Tower[J].Gunagdong Electric Power,2018,31(4) :133-139.
[26] 电力规划设计总院. 架空输电线路杆塔结构设计技术规定:DL/T 5154—2012[S]. 北京:中国计划出版社,2012 :15-18.
[27] SHAO Wei, CHEN Qun, HE Kelun, et al.Operation Optimization of Liquid Cooling Systems in Data Centers by the Heat Current Method and Artificial Neural Network[J].Journal of Thermal Science,2020,29(4) :1063-1075.
[28] TAHERI A, MOGHADAM M G, MOHAMMADI M, et al.A new design of liquid-cooled heat sink by altering the heat sink heat pipe application:Experimental approach and prediction via artificial neural network[J].Energy Convers Manage,2020,206 :112485.
[29] BAUDOIN A , SAURY D , BOSTROM C . Optimized distribution of a large number of power electronics components cooled by conjugate turbulent natural convection[J].Applied Thermal Engineering: DesignProcesses,2017,124 :975-985.
[30] SIMON H . Neural Network : A Comprehensive Foundation[M].Englewood :Prentice Hall PTR,1994.
[31] WU Chenhui, ZHAO Jiateng, LIU Chenzhen, et al.Performance and prediction of baffled cold plate based battery thermal management system[J].Applied Thermal Engineering Design Processes Equipmeng Economics,2023,219 :119466.