Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

基于PRSGMD-XGBoost的光伏直流电能质量扰动识别

来源:电工电气发布时间:2024-08-01 14:01 浏览次数:284

基于PRSGMD-XGBoost的光伏直流电能质量扰动识别

朱宪宇,熊婕,李庆先,刘良江,左从瑞,刘青
(湖南省计量检测研究院,湖南 长沙 410018)
 
    摘 要:光伏电网受天气因素和非线性负载等影响,直流电信号中存在的扰动成分使得电能质量评估的准确性难以保障。利用复合多尺度模糊熵可克服光伏直流电信号初始单分量相似性度量突变的问题,构建了正则化 CMFE 算子评估各初始单分量重构后的复杂度并约束残余量能量最小,从而实现电信号和噪声等扰动的准确分离,在此基础上,提出了基于部分重构辛几何模态分解(PRSGMD)的光伏直流电信号自适应去噪方法,结合极限梯度提升机(XGBoost)可有效挖掘特征与暂态稳定性之间关系的优势,实现了光伏直流电信号中复合扰动的分离和识别。
    关键词: 光伏;电能质量扰动识别;部分重构辛几何模态分解;极限梯度提升机
    中图分类号:TM615     文献标识码:A     文章编号:1007-3175(2024)07-0061-07
 
Photovoltaic DC Power Quality Disturbance Identification
Based on PRSGMD-XGBoost
 
ZHU Xian-yu, XIONG Jie, LI Qing-xian, LIU Liang-jiang, ZUO Cong-rui, LIU Qing
(Hunan Institute of Metrology and Test, Changsha 410018, China)
 
    Abstract: The photovoltaic (PV) grid is affected by weather factors and nonlinear loads, and the disturbance components in the direct current (DC) signal make it difficult to ensure the accuracy of power quality assessment. Therefore, in this paper the problem that the composite multiscale fuzzy entropy (CMFE) can overcome the sudden change of the initial single component similarity measure of the photovoltai DC signal is utilized, then the regularized CMFE operator is constructed to evaluate the complexity of each initial single component after reconstruction, while constraining the residual energy to be minimized, and finally the separation of electrical signals and noise and other disturbance is realized. On this basis, an adaptive denoising method for photovoltai DC signal based on partial reconstruction of symplectic geometry mode decomposition (PRSGMD) is proposed, and combined with the advantage that extreme gradient boosting (XGBoost) can effectively mine the relationship between features and transient stability, the separation and identification of compound disturbance in photovoltaic DC signals is realized.
    Key words: photovoltaic; power quality disturbance identification; partial reconstruction of symplectic geometry mode decomposition;extreme gradient boosting
 
参考文献
[1] VINAYAGAM A, OTHMAN M L, VEERASAMY V, et al.A random subspace ensemble classification model for discrimination of power quality events in solar PV microgrid power network[J].Plos One,2022,17(1) :0262570.
[2] 李固. 基于光伏发电工程的电力系统长期规划模型研究[J]. 现代工业经济和信息化,2023,13(8) :192-194.
[3] 葛乐,周宇浩,袁晓冬,等. 光伏并网与电能质量治理统一控制 [J]. 太阳能学报,2017,38(9) :2426-2433.
[4] 李家俊,吴建军,陈武,等. 基于 DWT-PCA-LIBSVM 的电能质量扰动分类方法[J]. 电工电气,2023(3) :20-24.
[5] 焦晋荣. 直流配电网电能质量问题分析及扰动检测[D].秦皇岛:燕山大学,2017.
[6] 武昭旭,杨岸,祝龙记. 一种新的电能质量扰动识别方法[J] . 重庆工商大学学报(自然科学版),2021,38(5) :49-54.
[7] 奚鑫泽,邢超,覃日升,等. 基于深度卷积去噪网络的电能质量扰动识别方法[J] . 南方电网技术,2022,16(12) :118-125.
[8] ZHAO Lihua, HONG Guo, WANG Zelong, et al.Research on fault vibration signal features of GIS disconnector based on EEMD and kurtosis criterion[J].IEEJ Transactions on Electrical and Electronic Engineering,2021,16(5) :677-686.
[9] YANG Lin, GUO Linming, ZHANG Wenhai, et al.Classification of multiple power quality disturbances by Tunable-Q wavelet transform with parameter selection[J].Energies,2022,15(9) :3428.
[10] DIVYALAKSHMI D, SUBRAMANIAM N P.Photovoltaic based DVR with power quality detection using wavelet transform[J].Energy Procedia,2017,117 :458-465.
[11] 王新,闫文源. 基于变分模态分解和 SVM 的滚动轴承故障诊断[J]. 振动与冲击,2017,36(18) :252-256.
[12] PAN Haiyang, YANG Yu, LI Xin, et al.Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis[J].Mechanical Systems & Signal Processing,2019,114 :189-211.
[13] CHENG Jian, YANG Yu, HU Niaoqing, et al.A noise reduction method based on adaptive weighted symplectic geometry decomposition and its application in early gear fault diagnosis[J].Mechanical Systems and Signal Processing,2020,149(15) :107351.
[14] 郑直,高崇一,宋金超,等. 基于 SGMD 敏感参数和 KFCMC 的滚动轴承故障诊断方法[J] . 机床与液压,2020,48(11) :189-193.
[15] 杨宇,程健,彭晓燕,等. 一种基于改进辛几何模态分解的复合故障诊断方法[J]. 湖南大学学报(自然科学版),2020,47(2) :53-59.
[16] 郑近德,应万明,潘海洋,等. 基于改进全息希尔伯特谱分析的旋转机械故障诊断方法[J] . 机械工程学报,2023,59(1) :162-174.
[17] CAI J, CAI Y, CAI H, et al.Feeder Fault Warning of Distribution Network Based on XGBoost[J].Journal of Physics:Conference Series,2020,1639(1) :1-6.
[18] CHAKRABORTY D, ELZARKA H.Early detection of faults in HVAC systems using an XGBoost model with a dynamic threshold[J].Energy and Buildings,2019,185(2) :326-344.
[19] LIU Yinming, LIU Lin, YANG Liu, et al.Measuring distance using ultra-wideband radio technology enhanced by extreme gradient boosting decision tree (XGBoost)[J].Automation in Construction,2021,126(1) :103678.
[20] WANG Zucheng, PENG Yanfeng, LIU Yanfei, et al.Photovoltaic power quality analysis based on the modulation broadband mode decomposition algorithm[J].Energies,2021,14(23) :1423798.
[21] 喻贞楷,王斌,闫墉,等. 多扰动下微电网故障检测方法[J] . 电力系统及其自动化学报,2023,35(12) :151-158.