参考文献
[1] 刘云鹏,许自强,李刚,等. 人工智能驱动的数据分析技术在电力变压器状态检修中的应用综述[J]. 高电压技术,2019,45(2) :337-348.
[2] GUARDADAO J L, NAREDO J L, MORENO P, et al.A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis[J].IEEE Transactions on Power Delivery, 2001, 16(4) :643-647.
[3] DUVAL M, DEPABLA A.Interpretation of gas-inoil analysis using new IEC publication 60599 and IEC TC10 databases[J].IEEE Electrical Insulation Magazine, 2001, 17(2) :31-41.
[4] KIM Y M, LEE S J, SEO H D, et al.Development of dissolved gas analysis(DGA) expert system using new diagnostic algorithm for oil-immersed transformers[C]//2012 IEEE International Conference on Condition Monitoring and Diagnosis, 2012 :365-369.
[5] ROGERS R R.IEEE and IEC codes to interpret incipient faults in transformers, using gas in oil analysis[J].IEEE Transactions on Electrical Insulation, 1978,13(5) :349-354.
[6] MOLLMANN A, PAHLAVANPOUR B.New guidelines for interpretation of dissolved gas analysis in oilfilled transformers[J].Electra, 1999, 186 :31-51.
[7] LEE S, KIM Y, SEO H, et al.New methods of DGA diagnosis using IEC TC 10 and related databases Part2:Application of relative content of fault gases[J].IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(2) :691-696.
[8] 谢乐. 基于 DGA 和机器学习的变压器故障诊断和状态预测研究[D]. 成都:西南交通大学,2022.
[9] 白星振,臧元,葛磊蛟,等. 变压器故障诊断用油中溶解气体征兆优选方法[J] . 高电压技术,2023,49(9) :3864-3875.
[10] 谢乐,衡熙丹,刘洋,等. 基于线性判别分析和分步机器学习的变压器故障诊断[J]. 浙江大学学报(工学版), 2020,54(11) :2266-2272.
[11] 李云淏,咸日常,张海强,等. 基于改进灰狼算法与最小二乘支持向量机耦合的电力变压器故障诊断方法[J].电网技术,2023,47(4) :1470-1477.
[12] ZHANG Y, LI X, ZHENG H, et al.A fault diagnosis model of power transformers based on dissolved gas analysis features selection and improved krill herd algorithm optimized support vector machine[J].IEEE Access, 2019, 7 :102803-102811.
[13] 朱莉,汪小豪,李豪,等. 不平衡样本下基于变异麻雀搜索算法和改进 SMOTE 的变压器故障诊断方法[J].高电压技术,2023,49(12) :4993-5001.
[14] KONONENKO I.Estimating Attributes:Analysis and Extensions of RELIEF[C]//European Conference on Machine Learning, 1994 :171-182.
[15] DE SILVA V , TENENBAUM J B . Global versus local methods in nonlinear dimensionality reduction[C]//Neural Information Processing Systems, 2002 :721-728.
[16] MIRJALILI S, LEWIS A.The whale optimization algorithm[J].Advances in Engineering Software,2016, 95(12) :51-67.
[17] SUYKENS J A K, VANDEWALLE J.Least squares support vector machine classifiers[J].Neural Processing Letters, 1999, 9(3) :293-300.
[18] 张又文,冯斌,陈页,等. 基于遗传算法优化 XGBoost 的油浸式变压器故障诊断方法[J] . 电力自动化设备,2021,41(2) :200-206.