Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 最新索引

基于改进的SSA优化SVR的某工业园区短期负荷预测

来源:电工电气发布时间:2024-12-02 11:02 浏览次数:40

基于改进的SSA优化SVR的某工业园区短期负荷预测

谭学彪1,龙邦燎1,黄干1,李江娥1,田骥1,王海文2,钟建伟2
(1 国网湖北省电力有限公司恩施供电公司,湖北 恩施 445000;
  2 湖北民族大学 智能科学与工程学院,湖北 恩施 445000)
 
    摘 要:为实现不规律、波动性大、不确定性的电力负荷数据高精度预测,提出了一种使用小波包分解(WPD)与麻雀搜索算法(SSA)来优化支持向量回归(SVR)的短期负荷预测方案。该方案使用 WPD 将原始负荷序列分解成多个各异的小波动分量,将分解后的各组数据分别输入 SSA 优化后的 SVM 模型,并将得到的多个各异的小波动分量分别经模型预测出的结果进行相加得到最后取得的预测结果。结果表明:该方案能较好拟合整个测试集上的实际预测点位,适合于电力系统短期负荷的准确预测,证实了该模型的有效性和优越性。
    关键词: 短期电力负荷预测;小波包分解;麻雀搜索算法;支持向量机
    中图分类号:TM714     文献标识码:A     文章编号:1007-3175(2024)11-0015-09
 
Short-Term Power Load Forecasting for an Industrial Park Based on
Improved SSA and Optimized SVR
 
TAN Xue-biao1, LONG Bang-liao1, HUANG Gan1, LI Jiang-e1, TIAN Ji1, WANG Hai-wen2, ZHONG Jian-wei2
(1 Enshi Powr Supply Company of State Grid Hubei Electric Power Co., Ltd, Enshi 445000, China;
2 College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China)
 
    Abstract: To achieve high-precision prediction of irregular, highly volatile, and uncertain power load data, a short-term load forecasting scheme with using wavelet packet decomposition (WPD) and sparrow search algorithm (SSA) is proposed to optimize support vector regression(SVR). Firstly, WPD is used to decompose the original load into multiple distinct small fluctuation components. Then, each group of decomposed data is inputted into the SSA optimized SVM model. Finally, the obtained multiple distinct small fluctuation components are added up to the predicted results of the model to obtain the final prediction result. The results show that this scheme can well fit the actual predicted points on the entire test set, and is suitable for accurate short-term load prediction of the power system, confirming the effectiveness and superiority of the model.
    Key words: short-term power load forecasting; wavelet packet decomposition; sparrow search algorithm; support vector machine
 
参考文献
[1] 陶娟,邹红波,周冬. 基于提升人工神经网络的短期负荷预测模型[J]. 电工材料,2021(2) :53-56.
[2] ZHANG N, NIU M, WAN F, et al.Hazard prediction of water inrush in water-rich tunnels based on random forest algorithm[J].Applied Sciences,2024,14(2) :867.
[3] DONG J, WANG Z, WU J, et al.A novel runoff prediction model based on support vector machine and gate recurrent unit with secondary mode decomposition[J].Water Resources Management,2024,38(5) :1655-1674.
[4] 张晓燕,林鸿才,黄波,等. 基于最优交集相似日的 EMD-SVR 短期负荷预测[J]. 海峡科学,2023(7) :30-35.
[5] 邵必林,庄雪莉,曾卉玢. 基于 LSTM-XGBoost 和多模型算法的短期负荷预测[J] . 计算机时代,2023(12) :49-54.
[6] 孟德乾,袁建平,吴月超. 基于 VMD-IWOA-KELM 的短期电力负荷预测研究[J] . 科技创新与应用,2023,13(33) :136-139.
[7] 余志成,孙皓月,张碧宁. 基于 ARIMA 和 SVR 的短期电力负荷预测[J] . 河北建筑工程学院学报,2023,41(3) :189-196.
[8] 周思明,段金长,李颖杰,等. 一种改进的 SVM 短期电力系统负荷预测方法[J] . 沈阳工业大学学报,2023,45(6) :661-665.
[9] SINA A, KAUR D.Short Term Load Forecasting Model Based on Kernel-Support Vector Regression with Social Spider Optimization Algorithm[J].Journal of Electrical Engineering and Technology,2020,15(1) :393-402.
[10] FIGUEIRO C I, ABAIDE R A, NETO K N, et al.Bottom-Up Short-Term Load Forecasting Considering Macro-Region and Weighting by Meteorological Region [J] . Energies,2023,16(19) :6857.
[11] VRABLECOVA P, EZZEDDINE A B, ROZINAJOVA V, et al.Smart grid load forecasting using online support vector regression[J].Computers and Electrical Engineering,2018,65 :102-117.
[12] 樊浩研,刘杨,李璟. 基于 PCA-WPD 优化的电流互感器故障检测方法研究[J]. 粘接,2024,51(5) :193-196.
[13] 冷腾飞,苏圣超. 基于子区域切分与 SSA-XGBoost 的室内定位方法[J] . 传感技术学报,2024,37(5) :833-840.