Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

电力营销领域中大语言模型的多轮对话技术的研究

来源:电工电气发布时间:2025-01-23 10:23 浏览次数:2

电力营销领域中大语言模型的多轮对话技术的研究

王江辉1,刘鹏飞2
(1 江苏方天电力技术有限公司,江苏 南京 211102;
2 江苏思极科技服务有限公司,江苏 南京 210024)
 
    摘 要:电力营销领域的多轮对话技术,旨在提高电力营销效率和用户满意度。系统梳理了多轮对话技术的相关理论,阐述了电力营销多轮交互的预处理模块总体设计,介绍了数据预处理模块的功能及其实现方法。利用这些模块,在电力营销领域进行了多轮实证研究,分析了系统实验结果,并总结了多轮对话技术在电力行业的优势,展望了未来的研究方向,希望对电力营销领域的多轮对话技术的发展提供借鉴。
    关键词: 多轮对话技术;电力营销;预处理
    中图分类号:F407.61 ;TP18     文献标识码:A     文章编号:1007-3175(2025)01-0072-05
 
Research on Multi-Round Dialogue Technology of Large Language
Models in the Field of Power Marketing
 
WANG Jiang-hui1, LIU Peng-fei2
(1 Jiangsu Frontier Electric Technology Co., Ltd, Nanjing 211102, China;
2 Jiangsu Siji Technology Co., Ltd, Nanjing 210024, China)
 
    Abstract: The multi-round dialogue technology in the field of power marketing aims to improve the efficiency of power marketing and user satisfaction. The relevant theories of multi-round dialogue technology are systematically sorted out, the overall design of the preprocessing module for multi-round interaction in power marketing is elaborated, and the functions of the data preprocessing module and its realization methods are introduced. Using these modules, a multi-round empirical study was conducted in the field of electric power marketing,the results of system experiments were analyzed, and the advantages of multi-round dialogue technology in the electric power industry were summarized, and the future research direction was looked forward to, hoping to provide a reference for the development of multi-round dialogue technology in the field of electric power marketing.
    Key words: multi-round dialogue technology; power marketing; preprocessing
 
参考文献
[1] 曹祎,张莉,郭静,等. 基于大语言模型的低碳电力市场发展应用前景[J] . 智慧电力,2024,52(2) :8-16.
[2] 于硕,王司宇,王超,等. 类 ChatGPT 大语言模型在电力系统中的应用前景[J] . 电气时代,2023(10) :50-53.
[3] 冯钧,畅阳红,陆佳民,等. 基于大语言模型的水工程调度知识图谱的构建与应用[J] . 计算机科学与探索,2024,18(6) :1637-1647.
[4] 赵俊华,文福拴,黄建伟,等. 基于大语言模型的电力系统通用人工智能展望:理论与应用[J]. 电力系统自动化,2024,48(6) :13-28.
[5] 谷奉锦. 基于知识图谱的 5G 网络故障诊断与分析方法研究[D]. 南京:南京邮电大学,2023.
[6] 潘雨黛,张玲玲,蔡忠闽,等. 基于大规模语言模型的知识图谱可微规则抽取[J] . 计算机科学与探索,2023,17(10) :2403-2412.