基于GA-GWO算法的电动汽车有序充放电两阶段优化策略
闫丽梅1,王登银1,洪益民1,刘继翔2
(1 东北石油大学 电气信息工程学院,黑龙江 大庆 163318;
2 国网河南省电力公司新县供电公司,河南 新县 465550)
摘 要:电动汽车(EV)聚集性无序充电会对电力系统的安全与稳定性运行产生不良影响。考虑电网侧的调峰需求和 EV 用户的充电需求及充电成本,在基于分时电价的基础上,提出最小临界电量对 EV 向电网进行馈电进行限制,并给出一种基于最小临界电量的两阶段有序充放电控制策略,以 EV 用户充电费用最小与电网负荷波动最小为目标,建立 EV 充放电优化模型。利用遗传-灰狼优化算法(GA-GWO)对 EV 的充放电行为进行优化,采用蒙特卡洛法模拟某居民区 450 辆 EV 的充电需求,与其他充电策略在不同渗透率的场景下进行了对比仿真,结果表明,所提出充放电优化策略能起到降低负荷方差以及削峰填谷作用,且随着参与调度的电动汽车数量增多,优化效果更明显。
关键词: 电动汽车;分时电价;最小临界电量;两阶段有序充放电;遗传- 灰狼优化算法
中图分类号:TM734 ;U469.72 文献标识码:A 文章编号:1007-3175(2025)02-0024-08
A Two-Stage Optimization Strategy for Orderly Charging and Discharging of
Electric Vehicles Based on GA-GWO Algorithm
YAN Li-mei1, WANG Deng-yin1, HONG Yi-min1, LIU Ji-xiang2
(1 School of Electrical & Information Engineering, Northeast Petroleum University, Daqing 163318, China;
2 Xinxian Power Supply Company of State Grid Henan Electric Power Company, Xinxian 465550, China)
Abstract: Aggregate disordered charging of electric vehicles (EV) can adversely affect the safe and stable operation of power systems.Considering the peak shaving demand on the grid side, the charging demand and charging cost of EV users, the minimum critical amount is proposed to limit the feeding of EV to the grid based on the time-of-use tariff. A two-stage orderly charging and discharging control strategy based on the minimum critical power is proposed, and an EV charging and discharging optimization model is established with the goal of minimizing the charging cost of EV users and minimizing the fluctuation of grid load. The genetic algorithm-gray wolf (GA-GWO) was used to optimize the charging and discharging behavior of EV, and the Monte Carlo method was used to simulate the charging demand of 450 EV in a residential area, and the simulation was compared with other charging strategies in different penetration scenarios. The results show that the proposed charging and discharging optimization strategy can reduce the load variance and peak shaving and valley filling, and the optimization effect is more obvious with the increase of the number of electric vehicles participating in the scheduling.
Key words: electric vehicle; time-of-use tariff; minimum critical power; two-stage orderly charging and discharging; genetic algorithm-gray wolf
参考文献
[1] 郭建龙,文福拴. 电动汽车充电对电力系统的影响及其对策[J]. 电力自动化设备,2015,35(6) :1-9.
[2] 张夏韦,梁军,王要强,等. 电动汽车充电负荷时空分布预测研究综述[J] . 电力建设,2023,44(12) :161-173.
[3] 吴晨曦,张杰,张新延,等. 考虑电价影响的电动汽车削峰填谷水平评价[J] . 电力系统保护与控制,2019,47(17) :14-22.
[4] 刘安茳,袁旭峰,李靖. 基于分时电价的小区电动汽车有序充电策略研究[J] . 贵州大学学报(自然科学版),2017,34(5) :54-58.
[5] 臧汉洲,叶宇剑,汤奕. 基于内点策略优化的受约束电动汽车充放电策略[J] . 电网技术,2023,47(10) :4170-4179.
[6] 麻秀范,王超,洪潇,等. 基于实时电价的电动汽车充放电优化策略和经济调度模型[J] . 电工技术学报,2016,31(z1) :190-202.
[7] 李东东,段维伊,林顺富,等. 实时电价条件下基于用户引导的电动汽车-充电桩匹配策略[J]. 电力系统自动化,2020,44(8) :74-82.
[8] 苏海锋,梁志瑞. 基于峰谷电价的家用电动汽车居民小区有序充电控制方法[J] . 电力自动化设备,2015,35(6) :17-22.
[9] 闫志杰,张蕊萍,董海鹰,等. 基于需求响应的电动汽车充放电电价与时段研究[J] . 电力系统保护与控制,2018,46(15) :16-22.
[10] 张良,孙成龙,蔡国伟,等. 基于 PSO 算法的电动汽车有序充放电两阶段优化策略[J] . 中国电机工程学报,2022,42(5) :1837-1851.
[11] 闫丽梅,都彬彬,徐建军. 基于聚类分层的规模化电动汽车协调充电策略[J] . 广东电力,2022,35(10) :65-73.
[12] 张宇轩,郭力,刘一欣,等. 电动汽车充电负荷概率分布的数值建模方法[J] . 电力系统自动化,2021,45(18) :61-70.
[13] 刘利兵,刘天琪,张涛,等. 计及电池动态损耗的电动汽车有序充放电策略优化[J] . 电力系统自动化,2016,40(5) :83-90.