参考文献
[1] 汪欣. 基于神经网络的风电功率优化预测方法[D]. 上海:上海交通大学,2020.
[2] ZHU Changsheng, ZHU Lina.Wind Speed Short-Term Prediction Based on Empirical Wavelet Transform, Recurrent Neural Network and Error Correction[J].Journal of Shanghai Jiaotong University(Science),2024,29(2) :297-308.
[3] CHEN Gonggui, LI Lijun, ZHANG Zhizhong, et al.Short-term wind speed forecasting with principle-subordinate predictor based on Conv-LSTM and improved BPNN[J].IEEE Access,2020,8 :67955-67973.
[4] 程杰,陈鼎,李春,等. 基于 GWO-CNN-BiLSTM 的超短期风电预测[J] . 科学技术与工程,2023,23(35) :15091-15099.
[5] 符杨,任子旭,魏书荣,等. 基于改进 LSTM-TCN 模型的海上风电超短期功率预测[J] . 中国电机工程学报,2022,42(12) :4292-4302.
[6] 郎伟明,麻向津,周博文,等.基于 LSTM 和非参数核密度估计的风电功率概率区间预测[J].智慧电力,2020,48(2) :31-37.
[7] WANG W, FENG B, HUANG G, et al.Conformal asymmetric multi-quantile generative transformer for day-ahead wind power interval prediction[J].Applied Energy,2023,333 :120634.
[8] BENTSEN L D, WARAKAGODA N D, STENBRO R, et al. pSatiotemporal wind speed forecasting using graph networks and novel transformer architectures[J].Applied Energy,2023,333 :120565.
[9] WANG Lei, HE Yigang, LI Lie, et al.A novel approach to ultra-short-term multi-step wind power predictions based on encoder-decoder architecture in natural language processing[J].Journal of Cleaner Production,2022,354 :131723.
[10] 骆钊,吴谕侯,朱家祥,等. 基于多尺度时间序列块自编码 Transformer 神经网络模型的风电超短期功率预测[J]. 电网技术,2023,47(9) :3527-3536.
[11] 林铮,刘可真,沈赋,等. 考虑海上风电多机组时空特性的超短期功率预测模型[J] . 电力系统自动化,2022,46(23) :59-66.
[12] WU Haixu, XU Jiehui, WANG Jianmin, et al.Autoformer: Decomposition transformers with autocorrelation for long-term series forecasting[J].Advances in Neural Information Processing Systems,2021,34 :22419-22430.
[13] 王渝红,史云翔,周旭,等. 基于时间模式注意力机制的 BiLSTM 多风电机组超短期功率预测[J]. 高电压技术,2022,48(5) :1884-1892.
[14] 宋柯. 基于多时间尺度及注意力机制的风电功率预测技术研究[D]. 重庆:重庆理工大学,2023.
[15] 李静茹,姚方. 引入注意力机制的 CNN 和 LSTM 复合风电预测模型[J]. 电气自动化,2022,44(6) :4-6.
[16] 王家乐,张耀,林帆,等. 基于自注意力特征提取的光伏功率组合概率预测[J] . 太阳能学报,2024,45(12) :123-131.
[17] CAI J , ZHANG K , JIANG H . Power Quality Disturbance Classification Based on Parallel Fusion of CNN and GRU [J] . Energies,2023,16(10) :4029.
[18] 乔石,王磊,张鹏超,等. 基于时间模式注意力机制的 GRU 短期负荷预测[J] . 电力系统及其自动化学报,2023,35(10) :49-58.
[19] 龙铖,余成波,何铖,等. 基于双重注意力机制 CNN-BiLSTM 与 LightGBM 误差修正的超短期风电功率预测[J].电气工程学报,2024,19(2) :138-145.
[20] LUONG M T, PHAM H, MANNING C D.Effective approaches to attention-based neural machine translation[J].ArXiv Preprint ArXiv,2015,1508 :04025.