Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 最新索引

电能质量扰动检测与识别方法综述

来源:电工电气发布时间:2025-03-03 15:03 浏览次数:8

电能质量扰动检测与识别方法综述

叶鹏1,2,宋弘3,吴浩1,2,邱函1,2
(1 四川轻化工大学 自动化与信息工程学院,四川 宜宾 644000;
2 人工智能四川省重点实验室,四川 宜宾 644000;
3 阿坝师范学院,四川 阿坝 624000)
 
    摘 要:随着新能源发电设施的快速发展,电能质量扰动(PQDs)问题愈发严峻,对其高效检测与准确识别提出了更高要求。梳理了 PQDs 研究中包括信号特征检测精度不足、特征选择冗余及扰动类型识别能力有限等关键问题,对国内外相关研究成果进行归纳总结,详细阐述了电能质量扰动检测与识别方法的最新研究进展;探讨了基于先进信号处理技术的特征检测方法和智能算法的特征提取策略,以及依托深度学习模型的分类识别技术,分析了各类方法的优势与不足。指出在电能质量扰动检测与识别方面存在的问题,并对未来发展趋势进行了展望。
    关键词: 电能质量扰动;扰动检测;扰动信号;特征选择;扰动识别;深度学习模型
    中图分类号:TM712     文献标识码:A     文章编号:1007-3175(2025)02-0001-09
 
A Review of Detection and Classification Methods for
Power Quality Disturbances
 
YE Peng1, 2, SONG Hong3, WU Hao1, 2, QIU Han1, 2
(1 School of Automation and Information Engineering, Sichuan University of Science and Engineering, Yibin 644000, China;
2 Key Laboratory of Artificial Intelligence in Sichuan Province, Yibin 644000, China;
3 Aba Teachers College, Aba 624000, China)
 
    Abstract: With the rapid development of renewable energy generation facilities, the issue of power quality disturbances (PQDs) has become increasingly severe, raising higher demands for efficient detection and accurate identification. This paper first identifies key issues in PQDs research, including inadequate detection accuracy of signal characteristics, redundancy in feature selection, and limited capability in identifying types of disturbances. It summarizes relevant research findings from both domestic and international sources and elaborates on the latest advancements in detection and identification methods for power quality disturbances. Next, it focuses on feature detection methods based on advanced signal processing techniques, feature extraction strategies using intelligent algorithms, and classification and recognition techniques relying on deep learning models, offering a comprehensive analysis of the strengths and weaknesses of various approaches. Finally,the problems in power quality disturbance detection and identification are pointed out, and the future development trend is outlooked.
    Key words: power quality disturbance; disturbance detection; disturbance signal; featur selection; disturbance identification; deep learning model
 
参考文献
[1] 齐霁. 浅析能源转型助力实现“双碳”目标[J]. 环渤海经济瞭望,2024(2) :36-40.
[2] 吴榆俊,钟森. 风光储微电网容量配置优化综述[ J ] .电气技术与经济,2022(4) :23-25.
[3] STET D, CZUMBIL L, MICU D D, et al.Power factor correction using EMTP-RV for engineering education[C]//2019 54th International Universities Power Engineering Conference(UPEC), 2019 :1-5.
[4] SHAO H, HENRIQUES R, MORAIS H, et al.Power quality monitoring in electric grid integrating offshore wind energy: A review[J].Renewable and Sustainable Energy Reviews,2024,191 :114094.
[5] 王燕. 电能质量扰动检测的研究综述[J]. 电力系统保护与控制,2021,49(13) :174-186.
[6] OLIVEIRA R A, BOLLEN M H J.Deep learning for power quality[J].Electric Power Systems Research,2023,214 :108887.
[7] RAY P K, MOHANTY S R, KISHOR N.Classification of power quality disturbances due to environmental characteristics in distributed generationsystem[J].IEEE Transactions on Sustainable Energy,2012,4(2) :302-313.
[8] ROBERTSON D C, CAMPS O I, MAYER J S, et al.Wavelets and electromagnetic power system transients[J].IEEE Transactions on Power Delivery,1996,11(2) :1050-1058.
[9] WRIGHT P S.Short-Time Fourier Transforms and Wigner-Ville Distributions Applied to the Calibration of Power Frequency Harmonic Analyzers[J].IEEE Transactions on Instrumentation and Measurement,1999,48(2) :475-478.
[10] GU Y H, BOLLEN M H J.Time-frequency and timescale domain analysis of voltage disturbances[J].IEEE Transactions on Power Delivery,2000,15(4) :1279-1284.
[11] SEVGI L.Numerical Fourier Transforms: DFT and FFT[J].IEEE Antennas and Propagation Magazine,2007,49(3) :238-243.
[12] LAI L L, CHAN W L, TSE C T, et al.Real-time frequency and harmonic evaluation using artificial neural networks[J].IEEE Transactions on Power Delivery,1999,14(1) :52-59.
[13] 张明锐,孙佳秀,周霖. 基于小波变换和 FFT 的电能质量扰动分类[J]. 机电一体化,2010,16(12) :29-34.
[14] KARIMI M, MOKHTARI H, IRAVANI M R.Wavelet based on-line disturbance detection for power quality applications[J].IEEE Transactions on Power Delivery,2000,15(4) :1212-1220.
[15] HE H , SHEN X , STARZYK J A . Power quality disturbances analysis based on EDMRA method[J].International Journal of Electrical Power & Energy Systems, 2009,31(6) :258-268.
[16] THIRUMALA K, PAL S, JAIN T, et al.A classification method for multiple power quality disturbances using EWT based adaptive filtering and multiclass SVM[J].Neurocomputing, 2019, 334 :265-274.
[17] LEE I W, DASH P K.S-transform-based intelligent system for classification of power quality disturbance signals[J].IEEE Transactions on Industrial Electronics, 2003, 50(4) :800-805.
[18] CHILUKURI M V , DASH P K . Multiresolution S-transform-based fuzzy recognition system for power quality events[J].IEEE Transactions on Power Delivery, 2004, 19(1) :323-330.
[19] 朱勇,陶用伟,李泽群. 基于 S 变换与特征优选的电能质量扰动识别[J]. 电工技术,2023(21) :97-100.
[20] BISWAL B, BISWAL M, MISHRA S, et al.Automatic classification of power quality events using balanced neural tree[J].IEEE Transactions on Industrial Electronics,2013,61(1) :521-530.
[21] JAYASREE T, DEVARAJ D, SUKANESH R.Power quality disturbance classification using Hilbert transform and RBF networks[J].Neurocomputing,2010,73(7/9) :1451-1456.
[22] 兰名扬,刘宇龙,金涛,等. 基于可视化轨迹圆和 ResNet18 的复合电能质量扰动类型识别[J] . 中国电机工程学报,2022,42(17) :6274-6285.
[23] 徐佳雄,张明,王阳,等. 基于改进 Hilbert-Huang 变换的电能质量扰动定位与分类[J] . 现代电力,2021,38(4) :362-369.
[24] 张小东. 基于自适应卡尔曼滤波算法在电能质量检测中的应用[D]. 长沙:长沙理工大学,2019.
[25] BOLLEN M H J, GU I Y H.Signal processing of power quality disturbances[M].New York :John Wiley & Sons, 2006.
[26] 陈子璇,席燕辉,沈银. 基于卡尔曼滤波和深度置信网络的复合电能质量扰动分类[J]. 电力系统保护与控制,2022,50(7) :81-90.
[27] REDDY J B V, DASH P K, SAMANTARAY R, et al.Fast tracking of power quality disturbance signals using an optimized unscented filter[J].IEEE Transactions on Instrumentation and Measurement,2009,58(12) :3943-3952.
[28] HUANG S J, HUANG C L, HSIEH C T.Application of Gabor transform technique to supervise power system transient harmonics[J].IEE Proceedings-Generation, Transmission and Distribution,1996,143(5) :461-466.
[29] KAWADY T A, ELKALASHY N I, IBRAHIM A E, et al.Arcing fault identification using combined Gabor transform-neural network for transmission lines[J].International Journal of Electrical Power & Energy Systems,2014,61 :248-258.
[30] CHO S H, JANG G, KWON S H.Time-frequency analysis of power-quality disturbances via the Gabor-Wigner transform[J].IEEE Transactions on Power Delivery,2010,25(1) :494-499.
[31] 商立群,李朝彪,邓力文,等. 基于 ISSA-XGBoost 的电能质量扰动识别方法研究[J] . 电力系统保护与控制,2024,52(13) :115-124.
[32] 李天云,陈昌雷,周博,等. 奇异值分解和最小二乘支持向量机在电能质量扰动识别中的应用[J]. 中国电机工程学报,2008,28(34) :124-128.
[33] 瞿合祚,刘恒,李晓明,等. 一种电能质量多扰动分类中特征组合优化方法[J] . 电力自动化设备,2017,37(3) :146-152.
[34] AHILA R, SADASIVAM V, MANIMALA K.An integrated PSO for parameter determination and feature selection of ELM and its application inclassification of power system disturbances[J].Applied Soft Computing,2015,32 :23-37.
[35] BISWAL B, DASH P K, MISHRA S.A hybrid ant colony optimization technique for power signal pattern classification[J].Expert Systems with Applications,2011,38(5) :6368-6375.
[36] 阮梓航,肖先勇,胡文曦,等. 基于多粒度特征选择和模型融合的复合电能质量扰动分类特征优化[J]. 电力系统保护与控制,2022,50(14) :1-10.
[37] HUANG N, LU G, CAI G, et al.Feature selection of power quality disturbance signals with an entropy-importance-based random forest[J].Entropy,2016,18(2) :44.
[38] CAMARILLO-PE~NARANDA J R , RAMOS G . Fault classification and voltage sag parameters computation using voltage ellipses[C]//IEEE 2018 IEEE/IAS 54th Industrial and Commercial Power Systems Technical Conference(I&CPS),2018 :1-6.
[39] LUO Y, LI K, LI Y, et al.Three-layer Bayesian network for classification of complex power quality disturbances[J].IEEE Transactions on Industrial Informatics,2017,14(9) :3997-4006.
[40] 聂晓华. 一种基于卡尔曼滤波的电能质量扰动检测新方法[J] . 中国电机工程学报,2017,37(22) :6649-6658.
[41] DENG L, YU D.Deep learning: Methods and applications[J].Foundations and Trends® in Signal Processing,2013,7(3/4) :197-387.
[42] WANG X.Deep learning in object recognition,detection, and segmentation[J].Foundations and Trends® in Signal Processing,2016,8(4):217-382.
[43] 龚正,邹阳,金涛,等. 基于特征融合并行优化模型的电能质量扰动分类方法[J] . 中国电机工程学报,2023,43(3) :1017-1027.
[44] 郑炜,林瑞全,王俊,等. 基于 GAF 与卷积神经网络的电能质量扰动分类[J] . 电力系统保护与控制,2021,49(11) :97-104.
[45] 瞿合祚,李晓明,陈陈,等. 基于卷积神经网络的电能质量扰动分类[J] . 武汉大学学报(工学版),2018,51(6) :534-539.
[46] 陈伟,何家欢,裴喜平. 基于相空间重构和卷积神经网络的电能质量扰动分类[J] . 电力系统保护与控制,2018,46(14) :87-93.
[47] 贺才郡,李开成,董宇飞,等. 基于知识蒸馏与 RP-MobileNetV3 的电能质量复合扰动识别[J]. 电力系统保护与控制,2023,51(14) :75-84.
[48] 张立鹏,郑岩,秦刚,等. 一种实时电能质量扰动识别分类方法[J]. 河北工业科技,2019,36(1) :50-54.
[49] 钱倍奇,陈谦,李宗源,等. 基于马尔可夫转换场与多头注意力机制的电能质量扰动分类方法[J]. 电网技术,2024,48(2) :721-729.
[50] 张逸,欧杰宇,金涛,等. 基于特征图像组合与改进 ResNet-18 的电能质量扰动识别方法[J]. 中国电机工程学报,2024,44(7) :2531-2544.
[51] 王维博,张斌,曾文入,等. 基于特征融合一维卷积神经网络的电能质量扰动分类[J]. 电力系统保护与控制,2020,48(6) :53-60.
[52] 王伟,李开成,许立武,等. 基于一维卷积神经网络多任务学习的电能质量扰动识别方法[J] . 电测与仪表,2022,59(3) :18-25.
[53] 王继东,张迪. 基于侧输出融合卷积神经网络的电能质量扰动分类方法[J] . 电力自动化设备,2021,41(11) :107-112.
[54] 朱瑞金,郭威麟,龚雪娇. 基于自编码器和卷积神经网络的电能质量扰动分类[J]. 电力系统及其自动化学报,2019,31(7) :70-75.
[55] 曹梦舟, 张艳. 基于卷积-长短期记忆网络的电能质量扰动分类[J] . 电力系统保护与控制,2020,48(2) :86-92.
[56] 刘佳翰,陈克绪,马建,等. 基于卷积神经网络和随机森林的三相电压暂降分类[J] . 电力系统保护与控制,2019,47(20) :112-118.
[57] CHEN Z, LI M, JI T, et al.Real-time recognition of power quality disturbance-based deep belief network using embedded parallel computing platform[J].IEEJ Transactions on Electrical and Electronic Engineering,2020,15(4) :519-526.
[58] 胡婧, 周洋, 何志强, 等. 基于深度置信网络和随机森林的电力扰动检测方法[J]. 供用电,2020,37(9) :17-22.
[59] 武昭旭,杨岸,祝龙记. 基于循环神经网络的电能质量扰动识别[J] . 电力系统保护与控制,2020,48(18) :88-94.
[60] 王以忠,栾振国,郭肖勇,等. 基于注意力机制和双向长短期记忆网络的电能质量扰动识别[J]. 天津科技大学学报,2021,36(4) :51-56.
[61] KHETARPAL P, NAGPAL N, SIANO P, et al.Power quality disturbance signal segmentation and classification based on modified BI-LSTM with double attention mechanism[J].IET Generation,Transmission & Distribution,2024,18(1) :50-62.
[62] 简献忠,王绪涛,王如志. 基于生成对抗网络的电能质量信号压缩重构方法[J] . 控制工程,2021,28(8) :1654-1661.
[63] 屈相帅,段斌,尹桥宣,等. 基于稀疏自动编码器深度神经网络的电能质量扰动分类方法[J]. 电力自动化设备,2019,39(5) :157-162.