参考文献
[1] 齐霁. 浅析能源转型助力实现“双碳”目标[J]. 环渤海经济瞭望,2024(2) :36-40.
[2] 吴榆俊,钟森. 风光储微电网容量配置优化综述[ J ] .电气技术与经济,2022(4) :23-25.
[3] STET D, CZUMBIL L, MICU D D, et al.Power factor correction using EMTP-RV for engineering education[C]//2019 54th International Universities Power Engineering Conference(UPEC), 2019 :1-5.
[4] SHAO H, HENRIQUES R, MORAIS H, et al.Power quality monitoring in electric grid integrating offshore wind energy: A review[J].Renewable and Sustainable Energy Reviews,2024,191 :114094.
[5] 王燕. 电能质量扰动检测的研究综述[J]. 电力系统保护与控制,2021,49(13) :174-186.
[6] OLIVEIRA R A, BOLLEN M H J.Deep learning for power quality[J].Electric Power Systems Research,2023,214 :108887.
[7] RAY P K, MOHANTY S R, KISHOR N.Classification of power quality disturbances due to environmental characteristics in distributed generationsystem[J].IEEE Transactions on Sustainable Energy,2012,4(2) :302-313.
[8] ROBERTSON D C, CAMPS O I, MAYER J S, et al.Wavelets and electromagnetic power system transients[J].IEEE Transactions on Power Delivery,1996,11(2) :1050-1058.
[9] WRIGHT P S.Short-Time Fourier Transforms and Wigner-Ville Distributions Applied to the Calibration of Power Frequency Harmonic Analyzers[J].IEEE Transactions on Instrumentation and Measurement,1999,48(2) :475-478.
[10] GU Y H, BOLLEN M H J.Time-frequency and timescale domain analysis of voltage disturbances[J].IEEE Transactions on Power Delivery,2000,15(4) :1279-1284.
[11] SEVGI L.Numerical Fourier Transforms: DFT and FFT[J].IEEE Antennas and Propagation Magazine,2007,49(3) :238-243.
[12] LAI L L, CHAN W L, TSE C T, et al.Real-time frequency and harmonic evaluation using artificial neural networks[J].IEEE Transactions on Power Delivery,1999,14(1) :52-59.
[13] 张明锐,孙佳秀,周霖. 基于小波变换和 FFT 的电能质量扰动分类[J]. 机电一体化,2010,16(12) :29-34.
[14] KARIMI M, MOKHTARI H, IRAVANI M R.Wavelet based on-line disturbance detection for power quality applications[J].IEEE Transactions on Power Delivery,2000,15(4) :1212-1220.
[15] HE H , SHEN X , STARZYK J A . Power quality disturbances analysis based on EDMRA method[J].International Journal of Electrical Power & Energy Systems, 2009,31(6) :258-268.
[16] THIRUMALA K, PAL S, JAIN T, et al.A classification method for multiple power quality disturbances using EWT based adaptive filtering and multiclass SVM[J].Neurocomputing, 2019, 334 :265-274.
[17] LEE I W, DASH P K.S-transform-based intelligent system for classification of power quality disturbance signals[J].IEEE Transactions on Industrial Electronics, 2003, 50(4) :800-805.
[18] CHILUKURI M V , DASH P K . Multiresolution S-transform-based fuzzy recognition system for power quality events[J].IEEE Transactions on Power Delivery, 2004, 19(1) :323-330.
[19] 朱勇,陶用伟,李泽群. 基于 S 变换与特征优选的电能质量扰动识别[J]. 电工技术,2023(21) :97-100.
[20] BISWAL B, BISWAL M, MISHRA S, et al.Automatic classification of power quality events using balanced neural tree[J].IEEE Transactions on Industrial Electronics,2013,61(1) :521-530.
[21] JAYASREE T, DEVARAJ D, SUKANESH R.Power quality disturbance classification using Hilbert transform and RBF networks[J].Neurocomputing,2010,73(7/9) :1451-1456.
[22] 兰名扬,刘宇龙,金涛,等. 基于可视化轨迹圆和 ResNet18 的复合电能质量扰动类型识别[J] . 中国电机工程学报,2022,42(17) :6274-6285.
[23] 徐佳雄,张明,王阳,等. 基于改进 Hilbert-Huang 变换的电能质量扰动定位与分类[J] . 现代电力,2021,38(4) :362-369.
[24] 张小东. 基于自适应卡尔曼滤波算法在电能质量检测中的应用[D]. 长沙:长沙理工大学,2019.
[25] BOLLEN M H J, GU I Y H.Signal processing of power quality disturbances[M].New York :John Wiley & Sons, 2006.
[26] 陈子璇,席燕辉,沈银. 基于卡尔曼滤波和深度置信网络的复合电能质量扰动分类[J]. 电力系统保护与控制,2022,50(7) :81-90.
[27] REDDY J B V, DASH P K, SAMANTARAY R, et al.Fast tracking of power quality disturbance signals using an optimized unscented filter[J].IEEE Transactions on Instrumentation and Measurement,2009,58(12) :3943-3952.
[28] HUANG S J, HUANG C L, HSIEH C T.Application of Gabor transform technique to supervise power system transient harmonics[J].IEE Proceedings-Generation, Transmission and Distribution,1996,143(5) :461-466.
[29] KAWADY T A, ELKALASHY N I, IBRAHIM A E, et al.Arcing fault identification using combined Gabor transform-neural network for transmission lines[J].International Journal of Electrical Power & Energy Systems,2014,61 :248-258.
[30] CHO S H, JANG G, KWON S H.Time-frequency analysis of power-quality disturbances via the Gabor-Wigner transform[J].IEEE Transactions on Power Delivery,2010,25(1) :494-499.
[31] 商立群,李朝彪,邓力文,等. 基于 ISSA-XGBoost 的电能质量扰动识别方法研究[J] . 电力系统保护与控制,2024,52(13) :115-124.
[32] 李天云,陈昌雷,周博,等. 奇异值分解和最小二乘支持向量机在电能质量扰动识别中的应用[J]. 中国电机工程学报,2008,28(34) :124-128.
[33] 瞿合祚,刘恒,李晓明,等. 一种电能质量多扰动分类中特征组合优化方法[J] . 电力自动化设备,2017,37(3) :146-152.
[34] AHILA R, SADASIVAM V, MANIMALA K.An integrated PSO for parameter determination and feature selection of ELM and its application inclassification of power system disturbances[J].Applied Soft Computing,2015,32 :23-37.
[35] BISWAL B, DASH P K, MISHRA S.A hybrid ant colony optimization technique for power signal pattern classification[J].Expert Systems with Applications,2011,38(5) :6368-6375.
[36] 阮梓航,肖先勇,胡文曦,等. 基于多粒度特征选择和模型融合的复合电能质量扰动分类特征优化[J]. 电力系统保护与控制,2022,50(14) :1-10.
[37] HUANG N, LU G, CAI G, et al.Feature selection of power quality disturbance signals with an entropy-importance-based random forest[J].Entropy,2016,18(2) :44.
[38] CAMARILLO-PE~NARANDA J R , RAMOS G . Fault classification and voltage sag parameters computation using voltage ellipses[C]//IEEE 2018 IEEE/IAS 54th Industrial and Commercial Power Systems Technical Conference(I&CPS),2018 :1-6.
[39] LUO Y, LI K, LI Y, et al.Three-layer Bayesian network for classification of complex power quality disturbances[J].IEEE Transactions on Industrial Informatics,2017,14(9) :3997-4006.
[40] 聂晓华. 一种基于卡尔曼滤波的电能质量扰动检测新方法[J] . 中国电机工程学报,2017,37(22) :6649-6658.
[41] DENG L, YU D.Deep learning: Methods and applications[J].Foundations and Trends® in Signal Processing,2013,7(3/4) :197-387.
[42] WANG X.Deep learning in object recognition,detection, and segmentation[J].Foundations and Trends® in Signal Processing,2016,8(4):217-382.
[43] 龚正,邹阳,金涛,等. 基于特征融合并行优化模型的电能质量扰动分类方法[J] . 中国电机工程学报,2023,43(3) :1017-1027.
[44] 郑炜,林瑞全,王俊,等. 基于 GAF 与卷积神经网络的电能质量扰动分类[J] . 电力系统保护与控制,2021,49(11) :97-104.
[45] 瞿合祚,李晓明,陈陈,等. 基于卷积神经网络的电能质量扰动分类[J] . 武汉大学学报(工学版),2018,51(6) :534-539.
[46] 陈伟,何家欢,裴喜平. 基于相空间重构和卷积神经网络的电能质量扰动分类[J] . 电力系统保护与控制,2018,46(14) :87-93.
[47] 贺才郡,李开成,董宇飞,等. 基于知识蒸馏与 RP-MobileNetV3 的电能质量复合扰动识别[J]. 电力系统保护与控制,2023,51(14) :75-84.
[48] 张立鹏,郑岩,秦刚,等. 一种实时电能质量扰动识别分类方法[J]. 河北工业科技,2019,36(1) :50-54.
[49] 钱倍奇,陈谦,李宗源,等. 基于马尔可夫转换场与多头注意力机制的电能质量扰动分类方法[J]. 电网技术,2024,48(2) :721-729.
[50] 张逸,欧杰宇,金涛,等. 基于特征图像组合与改进 ResNet-18 的电能质量扰动识别方法[J]. 中国电机工程学报,2024,44(7) :2531-2544.
[51] 王维博,张斌,曾文入,等. 基于特征融合一维卷积神经网络的电能质量扰动分类[J]. 电力系统保护与控制,2020,48(6) :53-60.
[52] 王伟,李开成,许立武,等. 基于一维卷积神经网络多任务学习的电能质量扰动识别方法[J] . 电测与仪表,2022,59(3) :18-25.
[53] 王继东,张迪. 基于侧输出融合卷积神经网络的电能质量扰动分类方法[J] . 电力自动化设备,2021,41(11) :107-112.
[54] 朱瑞金,郭威麟,龚雪娇. 基于自编码器和卷积神经网络的电能质量扰动分类[J]. 电力系统及其自动化学报,2019,31(7) :70-75.
[55] 曹梦舟, 张艳. 基于卷积-长短期记忆网络的电能质量扰动分类[J] . 电力系统保护与控制,2020,48(2) :86-92.
[56] 刘佳翰,陈克绪,马建,等. 基于卷积神经网络和随机森林的三相电压暂降分类[J] . 电力系统保护与控制,2019,47(20) :112-118.
[57] CHEN Z, LI M, JI T, et al.Real-time recognition of power quality disturbance-based deep belief network using embedded parallel computing platform[J].IEEJ Transactions on Electrical and Electronic Engineering,2020,15(4) :519-526.
[58] 胡婧, 周洋, 何志强, 等. 基于深度置信网络和随机森林的电力扰动检测方法[J]. 供用电,2020,37(9) :17-22.
[59] 武昭旭,杨岸,祝龙记. 基于循环神经网络的电能质量扰动识别[J] . 电力系统保护与控制,2020,48(18) :88-94.
[60] 王以忠,栾振国,郭肖勇,等. 基于注意力机制和双向长短期记忆网络的电能质量扰动识别[J]. 天津科技大学学报,2021,36(4) :51-56.
[61] KHETARPAL P, NAGPAL N, SIANO P, et al.Power quality disturbance signal segmentation and classification based on modified BI-LSTM with double attention mechanism[J].IET Generation,Transmission & Distribution,2024,18(1) :50-62.
[62] 简献忠,王绪涛,王如志. 基于生成对抗网络的电能质量信号压缩重构方法[J] . 控制工程,2021,28(8) :1654-1661.
[63] 屈相帅,段斌,尹桥宣,等. 基于稀疏自动编码器深度神经网络的电能质量扰动分类方法[J]. 电力自动化设备,2019,39(5) :157-162.