Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 最新索引

防风拉线对输电塔线体系抗风性能的动态响应分析

来源:电工电气发布时间:2025-07-24 14:24 浏览次数:6

防风拉线对输电塔线体系抗风性能的动态响应分析

董芳如1,刘举成2,戴惠婷3,马佳莲3
(1 湖南城市学院 机械与电气工程学院,湖南 益阳 413000;
 2 国网山东省电力公司栖霞市供电公司,山东 栖霞 265300;
3 河北石油职业技术大学 电气与电子系,河北 承德 067000)
 
    摘 要:大风环境下输电线路易发生倒塌、断线、跳闸等故障,严重时会影响线路的正常运营和使用安全。为了掌握大风作用下地锚式防风拉线对塔线体系抗风性能的影响,以 110 kV 草某一线为工程背景,运用 ANSYS 软件搭建杆塔-导线-防风拉线模型,分析在 32、38、42 m/s 风速作用下防风拉线对塔线体系抗风的效果;采用塔顶偏移比、主材压屈比评估杆塔在不同风速作用下的抗风性能,并通过引入拉线张力比,评估防风拉线的抗风能力。研究结果表明:随着风速的增加,杆塔主材均满足屈服强度,防风拉线始终处于安全状态,且在 42 m/s 极端风速下,塔顶位移比偏大,需采取适当加固措施。
    关键词: 风振位移;塔线体系;风振响应;防风拉线
    中图分类号:TM752     文献标识码:B     文章编号:1007-3175(2025)07-0043-09
 
Dynamic Response Analysis of Windproof Guy Wires on Wind Resistant
Performance of the Transmission Tower Line System
 
DONG Fang-ru1, LIU Ju-cheng2, DAI Hui-ting3, MA Jia-lian3
(1 College of Mechanic and Electrical Engineering, Hunan City University, Yiyang 413000, China;
2 State Grid Shandong Electric Power Company Qixia Power Supply Company, Qixia 265300, China;
3 Department of Electrical and Electronics, Hebei Petroleum University of Technology, Chengde 067000, China)
 
    Abstract: Under high wind conditions, transmission lines are prone to faults such as collapse, wire breakage, and tripping, which can severely impact their normal operation and safety. In order to grasp the influence of ground-anchored windproof guy wires on the wind resistance performance of the tower line system under strong wind conditions, this study takes the 110 kV grass a line as the engineering background. Utilizing ANSYS software, a model of the tower-conductor-windproof guy wires was established to analyze the wind resistance effectiveness of the windproof guy wires on the tower line system under wind speeds of 32, 38, and 42 m/s. The tower top displacement ratio and main material buckling ratio were employed to evaluate the wind resistance performance of the tower under different wind speeds. The research findings indicate that as wind speed increases, the tower’s main structural materials consistently meet yield strength requirements,the windproof guy wires remain in a safe operational state, and under the extreme wind speed of 42 m/s, the tower top displacement ratio becomes excessively large, necessitating the implementation of appropriate reinforcement measures.
    Key words: wind-induced displacement; tower line system; wind-induced response; windproof guy wire
 
参考文献
[1] 杨文刚,朱伯文,齐立忠,等. 特高压拉线塔拉线的非线性静力特性及其整体简化有限元模型[J]. 中国电机工程学报,2015,35(S1) :232-240.
[2] 张凯.±800 kV 特高压直流用拉线塔结构分析[D]. 保定:华北电力大学,2014.
[3] LI Jiaxiang, LI Hongnan, FU Xing.Stability and dynamic analyses of transmission tower-line systems subjected to conductor breaking[J].International Journal of Structural Stability and Dynamics,2017,17(6) :1771013.
[4] 李娟,廖峥,张陵,等. 新疆强风沙尘环境下 750 kV 线路运维技术[J] . 电力系统保护与控制,2017,45(2) :123-130.
[5] 于佳宝,卓越,张佳毅,等. 海岛大跨越输电塔线体系风振响应及动力失稳分析[J] . 山东电力技术,2024,51(1) :1-10.
[6] MACEDO F C, ALMINHANA F, MIGUEL L F F, et al.Performance-based reliability assessment of transmission lines under tornado actions[J].Reliability Engineering & System Safety,2024,252 :110475.
[7] ZHU Chao, YANG Qingshan, HUANG Guoqing, et al.Fragility analysis and wind directionality-based failure probability evaluation of transmission tower under strong winds[J].Journal of Wind Engineering and Industrial Aerodynamics,2024,246 :105668.
[8] 甘凤林,李小磊,高黔. 拉线初始预应力分布对拉线杆塔受力影响的研究[J]. 广东电力,2010,23(9) :7-10.
[9] ZHU N, SPARLING B F, KING J P C.Comparison of aeroelastic wind tunnel tests and frequency domain analyses of guyed mast dynamic response[J].Canadian Journal of Civil Engineering,2011,38(9) :984-997.
[10] GANI F, LEGERON F.Dynamic response of transmission lines guyed towers under wind loading[J].Canadian Journal of Civil Engineering,2010,37(3) :450-465.
[11] 汪大海,李杰. 强风下高压输电塔线系统非线性随机动力响应[J]. 振动与冲击,2010,29(6) :62-65.
[12] 张军强,李楠,高永亮,等. 大场域来流空间强风风场的数值模拟研究[J]. 高压电器,2021,57(7) :98-104.
[13] 贺博,修娅萍,赵恒,等. 强台风下高压输电线路塔——线耦联体系的力学行为仿真分析一:静力响应分析[J].高压电器,2016,52(4) :36-41.
[14] TIAN Li, ZHANG Xin, FU Xing.Fragility analysis of a long-span transmission tower-line system under wind loads[J].Advances in Structural Engineering,2020,23(10) :2110-2120.
[15] 余传运,张建润. 输电塔线体系动力特性及风振响应分析[J] . 东南大学学报(自然科学版),2019,49(1) :116-124.
[16] 宋耐超,王瑞琦,李明明,等. 多自然灾害下的架空输电线路运行风险评估[J] . 电力系统保护与控制,2021,49(19) :65-71.
[17] 杨肖辉,张东,李晓光,等.750 kV 输电线路风偏跳闸原因分析及改造措施研究[J] . 电气工程学报,2017,12(1) :40-46.
[18] 马莹. 吐鲁番地区输电线路防风措施的研究及应用[D].保定:华北电力大学,2018.
[19] 纪冬梅,赵大乐,姚秀平,等. 大跨越高压输电塔线体系的动力特性分析[J] . 上海电力学院学报,2012,28(6) :501-504.
[20] 伍川,杨晓辉,赵鹏飞,等. 基于塔线体系的风荷载作用下输电铁塔薄弱杆件分析[J] . 中国工程机械学报,2022,20(6) :504-509.
[21] 朱之健. 基于梁柱模型的输电塔线体系动力学响应研究[D]. 保定:华北电力大学,2022.
[22] 电力规划设计总院. 电力工程气象勘测技术规程:DL/T5158—2021[S].北京:中国计划出版社,2021 :14-18.
[23] 中国电力企业联合会.110 kV~750 kV 架空输电线路设计规范:GB 50545—2010[S]. 北京:中国计划出版社,2010 :38-41.
[24] 谢强,孙力,张勇.500 kV 输电塔结构抗冰加固改造方法试验研究[J] . 中国电机工程学报,2011,31(16) :108-114.
[25] 中华人民共和国住房和城乡建设部. 高耸结构设计标准:GB 50135—2019[S] . 北京:中国计划出版社,2019 :159-165.
[26] 中华人民共和国住房和城乡建设部. 钢结构通用规范:GB 55006—2021[S]. 北京:中国建筑工业出版社,2021 :94-96.
[27] 电力规划设计总院. 架空输电线路杆塔结构设计技术规程:DL/T 5486—2020[S]. 北京:中国计划出版社,2020 :21-28.