Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 最新索引

基于模糊补偿的MPC独立变桨减载控制

来源:电工电气发布时间:2025-07-24 15:24 浏览次数:11

基于模糊补偿的MPC独立变桨减载控制

张浩,张宇琪
(湖南工业大学 交通与电气工程学院,湖南 株洲 412007)
 
    摘 要:为降低独立变桨控制中的叶根载荷并保持输出功率的稳定性,对风力机进行线性化处理,建立状态空间方程,并将其转换至 dq 坐标系。在此基础上,构建适用于独立变桨模型预测控制(MPC)的预测方程,并根据控制目标与约束条件对输入输出权重进行调整。为进一步降低 MPC 独立变桨控制器的偏航弯矩和俯仰弯矩,设计了模糊补偿减载控制器,对传统模型预测控制算法中 dq 坐标系下的桨距角信号进行补偿,从而进一步降低叶根载荷并提高了输出功率的稳定性。通过 OpenFAST 与 Simulink 软件的联合仿真,结果表明,基于模糊补偿的模型预测独立变桨控制在功率稳定性和降载效果上优于基于 PI 控制和传统模型预测控制的方法。
    关键词: 模糊补偿;模型预测控制;独立变桨;减载控制
    中图分类号:TK83 ;TM571     文献标识码:A     文章编号:1007-3175(2025)07-0029-08
 
MPC Independent Pitch and Load Reduction Control
Based on Fuzzy Compensation
 
ZHANG Hao, ZHANG Yu-qi
(School of Traffic and Electrical Engineering, Hunan University of Technology, Zhuzhou 412007, China)
 
    Abstract: To reduce the blade root load in individual pitch control and maintain output power stability, this paper linearizes the wind turbine and establishes its state-space equations, which are then transformed into the dq coordinate system. On this basis, a prediction equation suitable for the model predictive control (MPC) of the independent pitch model is constructed, and the input and output weights are adjusted according to the control objective and constraint conditions. To further reduce the yaw bending moment and pitch bending moment of the MPC independent pitch controller, a fuzzy compensation load reduction controller was designed to compensate for the pitch angle signal in the dq coordinate system of the traditional MPC algorithm, thereby further reducing the blade root load and improves the stability of the output power. Through the joint simulation of OpenFAST and Simulink software, the results show that the model prediction independent pitch control based on fuzzy compensation is superior to the methods based on PI control and traditional model predictive control in terms of power stability and load reduction effect.
    Key words: fuzzy compensation; model predictive control; independent pitch; load reduction control
 
参考文献
[1] 李辉,杨超,胡姚刚,等. 抑制风力机疲劳载荷的直接比例谐振独立变桨控制策略[J] . 电力自动化设备,2016,36(3) :79-85.
[2] 郭百顺,秦斌,邵军,等. 风电机组独立变桨距控制策略研究[J]. 湖南工业大学学报, 2014,28(2) :42-45.
[3] MULDERS S P, VAN WINGERDEN J W.On the importance of the azimuth offset in a combined 1P and 2P SISO IPC implementation for wind turbine fatigue load reductions[C]//2019 American Control Conference(ACC),2019 :3506-3511.
[4] LARA M, GARRIDO J, VAN WINGERDEN J W, et al.Optimization with genetic algorithms of individual pitch control design with and without azimuth offset for wind turbines in the full load region[J].IFAC-PapersOnLine,2023,56(2) :342-347.
[5] MULDERS S P, PAMOSOSURYO A K, DISARIO G E, et al.Analysis and optimal individual pitch control decoupling by inclusion of an azimuth offset in the multiblade coordinate transformation[J].Wind Energy,2019,22(3) :341-359.
[6] LI Jianshen, WANG Shuangxin.Dual multivariable model-free adaptive individual pitch control for load reduction in wind turbines with actuator faults[J].Renewable Energy,2021,174 :293-304.
[7] WANG Xin , ZHOU Jianshu , QIN Bin , et al .Individual pitch control of wind turbines based on SVM load estimation and LIDAR measurement[J].IEEE Access,2021,9 :143913-143921.
[8] 孔维杰,秦斌,王欣. 风机独立变桨减载模型预测控制研究[J]. 电工技术,2024(4) :17-21.
[9] 曹松青,郝万君,陈歆婧,等. 基于模型预测控制的风电机组载荷控制[J]. 苏州科技大学学报(自然科学版),2019,36(3) :79-84.
[10] 田德,方建驹,刘枫,等. 大型风电机组模型预测独立变桨控制器设计[J] . 太阳能学报,2022,43(4) :461-467.
[11] 梁栋炀,宋子秋,刘亚娟. 基于 LPV-MPC 的风电机组功率-载荷协调控制策略[J] . 可再生能源,2024,42(1) :38-44.
[12] 王多睿,王维庆,蔡鑫. 基于 NMPC-PID 的风力机独立变桨距控制策略研究[J] . 太阳能学报,2017,38(9) :2520-2526.
[13] KAYEDPOUR N, SAMANI A E, DE KOONING J D M, et al.Model predictive control with a cascaded Hammerstein neural network of a wind turbine providing frequency containment reserve[J].IEEE Transactions on Energy Conversion,2021,37(1) :198-209.
[14] PETROVIC V, JELAVIC M, BAOTIC M.MPC framework for constrained wind turbine individual pitch control[J].Wind Energy,2021,24(1) :54-68.
[15] COLLET D, ALAMIR M, DI DOMENICO D, et al.Datadriven fatigue-oriented MPC applied to wind turbines individual pitch control[J].Renewable Energy,2021,170 :1008-1019.
[16] EL-BAKLISH S K, EL-BADAWY A A, FRISON G, et al.Nonlinear model predictive pitch control of aero-elastic wind turbine blades[J].Renewable Energy,2020,161 :777-791.
[17] RAACH S, SCHLIPF D, SANDNER F, et al.Nonlinear model predictive control of floating wind turbines with individual pitch control[C]//2014 American Control Conference,2014 :4434-4439.