基于改进高斯过程回归的变电站直流蓄电池SOH估算
丁芃,谢昊含,司威,杨茹楠,刘明阳
(国网天津市电力公司滨海供电分公司,天津 300450)
摘 要 :为了准确估算变电站直流蓄电池的健康状态(SOH),辅助直流系统的运行决策,提出了一种基于改进高斯过程回归的蓄电池SOH估算方法,通过建立变电站蓄电池组在实际不同运行工况下的蓄电池健康特征指标(HF),对高斯过程回归算法进行适应性改进,将变电站蓄电池实际历史运行数据与离线测试数据按比例混合制作训练集,实现变电站蓄电池HF与SOH之间的映射关系。实验结果表明,该方法针对于变电站这一特殊场景下的蓄电池具有良好的估算效果,可为直流系统运行维护提供理论依据。
关键词 : 变电站 ;直流蓄电池 ;蓄电池健康状态 ;蓄电池运行工况 ;高斯过程回归 ;训练集
中图分类号 :TM63 ;TM912 文献标识码 :A 文章编号 :1007-3175(2025)11-0014-07
SOH Estimation for DC Batteries in Substations Based on Improved Gaussian Process Regression
DING Peng, XIE Hao-han, SI Wei, YANG Ru-nan, LIU Ming-yang
(State Grid Tianjin Electric Power Company Binhai Power Supply Branch, Tianjin 300450, China)
Abstract: In order to accurately estimate the state of health (SOH) of DC batteries in substations and assist in the operation decision-making of DC systems, this paper proposes a battery SOH estimation method based on improved Gaussian process regression. By establishing the health of feature (HF) of battery packs in substations under different operating conditions, the Gaussian process regression algorithm is adaptively improved. The actual historical operating data of substation batteries is mixed with offline test data in proportion to create a training set, achieving the mapping relationship between HF and SOH of substation batteries. The experimental results show that this method has good estimation effect on batteries in this special scenario of substations and can provide theoretical basis for the operation and maintenance of DC systems.
Key words: substation; DC battery; state of health of battery; operating condition of battery; Gaussian process regression; training set
参考文献
[1] 孙冬,许爽 . 梯次利用锂电池健康状态预测 [J]. 电工 技术学报,2018,33(9):2121-2129.
[2] GONG Qingrui, WANG Ping, CHENG Ze.An encoderdecoder model based on deep learning for state of health estimation of lithium-ion battery[J].Journal of Energy Storage,2022,46:103804.
[3] TIAN Jinpeng, XIONG Rui, SHEN Weixiang, et al. State-of-charge estimation of LiFePO4 batteries in electric vehicles:A deep-learning enabled approach[J].Applied Energy,2021,291:116812.
[4] HAN Xuebing, OUYANG Minggao, LU Languang, et al. Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part Ⅱ :Pseudo-twodimensional model simplification and state of charge estimation[J].Journal of Power Sources, 2015,278 :814-825.
[5] PLETT G L.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part3. State and parameter estimation[J]. Journal of Power Sources,2004,134(2):277-292.
[6] WANG Yujie, ZHANG Chenbin, CHEN Zonghai.A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter[J].Journal of Power Sources,2015,279:306-311.
[7] CHANG Chun, WANG Qiyue, JIANG Jiuchun, et al. Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm[J]. Journal of Energy Storage,2021,38:102570.
[8] LIU Datong, ZHOU Jianbao, LIAO Haitao, et al.A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J].IEEE Transactions on Systems, Man, and Cybernetics:Systems,2015, 45(6):915-928.
[9] TIAN Jinpeng, XIONG Rui, SHEN Weixiang.Stateof-health estimation based on differential temperature for lithium ion batteries[J]. IEEE Transactions on Power Electronics,2020, 35(10):10363-10373. [10] ZHANG Li, LI Kang, DU Dajun, et al.A sparse least squares support vector machine used for SOC estimation of Li-ion Batteries[J].IFACPapersOnLine,2019,52(11):256-261.
[11] LI Xiaoyu, YUAN Changgui, WANG Zhenpo.Multitime-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression[J].Journal of Power Sources,2020, 467:228358.
[12] GOEBEL K, SAHA B, SAXENA A, et al.Prognostics in battery health management[J].IEEE Instrumentation & Measurement Magazine,2008,11(4):33-40.
[13] HE Jianghe, WEI Zhongbao, BIAN Xiaolei, et al. State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model[J].IEEE Transactions on Transportation Electrification, 2020,6(2):417-426.
[14] XUE Jiankai, SHEN Bo.A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering an Open Access Journal,2020,8(1):22-34.
[15] CHUNG J, GULCEHRE C, CHO K H, et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[J/OL].(2014-12-11)[2025- 08-14].https//arxiv.org/abs/1412.3555.