Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

基于改进潮流熵的含风电场双层协同调度

来源:电工电气发布时间:2016-04-06 12:06 浏览次数:21

基于改进潮流熵的含风电场双层协同调度 

丁楠,胡吕龙 
东南大学 电气工程学院,江苏 南京 210096 
 

摘 要:在风电渗透率较高时,风电场出力的波动在电网中形成扰动,会引发风电接入点的潮流局部涌动和全区域电网的潮流全局窜动。针对局部特性的潮流涌动和全局性的潮流窜动,以常规机组出力和储能为控制手段,提出了含风电场的双层协同调度模型。上层模型以调度周期内电网改进潮流熵的平均值最小为目标,下层模型以风电场并网点在调度周期内净注入功率方差的平均值最小为目标并采用NSGA-Ⅱ算法对所建模型交替迭代求解。含风电场的IEEE39节点系统算例验证了调度方法的可行性和有效性。
关键词:风电场;波动;潮流熵;双层规划
中图分类号:TM614 文献标识码:A 文章编号:1007-3175(2014)08-0015-06


Bilevel Cooperative Dispatch Considering Wind Power Penetration Based on Improved Power Flow Entropy 

DING Nan, HU Lv-long 
School of Electrical Engineering, Southeast University, Nanjing 210096, China 
 

Abstract: When the penetration of wind power is high, the fluctuations of wind farm output will form disturbance in the power grid, leading to local surge of power flow in the grid-connected point of wind farm and overall volatility of power flow in the regional power grid. Aiming at local surge and overall volatility of power flow and taking the output of conventional units and stored energy as the controlling means, this paper proposed the bilevel cooperative dispatching model considering wind farms. In the upper model, the target is to minimize the mean of improved power flow entropy in the scheduling period, while in the lower model, the target is to minimize the mean of variance of the net injection of active power in all of the grid-connected points of wind farm in the scheduling period. The NSGA-II algorithm was adopted to calculate the built models alternately and iteratively. The case of IEEE39 node system verifies the feasibility and effectiveness of the proposed dispatching method.
          Key words: wind farm; fluctuation; power flow entropy; bilevel programming


参考文献
[1] 雷亚洲.与风电并网相关的研究课题[J].电力系统自动化,2003,27(8):84-89.
[2] 孙元章,吴俊,李国杰,等.基于风速预测和随机规划的含风电场电力系统动态经济调度[J].中国电机工程学报,2009,29(4):41-47.
[3] 孙欣,吕跃春,高军,等.电网经济性与安全性的精益协调方法[J].电网技术,2009,33(11):12-17.
[4] 陈宁,于继来.基于电气剖分信息的风电系统有功调度与控制[J].中国电机工程学报,2008,28(16):51-58.
[5] 王卿然,谢国辉,张粒子.含风电系统的发用电一体化调度模型[J].电力系统自动化,2011,35(5):15-18.
[6] 陈海焱,陈金富,段献忠.含风电场电力系统经济调度的模糊建模及优化算法[J].电力系统自动化,2006,30(2):22-26.
[7] 陈道君,龚庆武,张茂林,等.考虑能源环境效益的含风电场多目标优化调度[J].中国电机工程学报,2011,31(13):10-17.
[8] 王成山,于波,肖峻,等.平滑可再生能源发电系统输出波动的储能系统容量优化方法[J].中国电机工程学报,2012,32(16):1-8.
[9] 王成山,于波,肖峻,等.平滑微电网联络线功率波动的储能系统容量优化方法[J].电力系统自动化,2013,37(3):12-17.
[10] 丁明,徐宁舟,毕锐,等.用于平抑可再生能源功率波动的储能电站的建模及评价[J].电力系统自动化,2011,35(2):66-72.
[11] 洪海生,江全元,严玉婷.实时平抑风电场功率波动的电池储能系统优化控制方法[J].电力系统自动化,2013,37(1):103-109.
[12] 姚伟锋,赵俊华,文福拴,等.基于双层优化的电动汽车充放电调度策略[J].电力系统自动化,2012,36(11):30-37.
[13] 屈刚,程浩忠,马则良,等.考虑联络线传输功率的双层分区多目标输电网规划[J].中国电机工程学报,2009,29(31):40-46.
[14] 张节潭,苗淼,范宏,等.含风电场的双层电源规划[J].电网技术,2011,35(11):43-49.
[15] 王淑芬,万仲平,樊恒,等.基于二层规划的无功优化模型及其混合算法[J].电网技术,2005,29(9):22-25.
[16] 丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报,2005,25(10):107-110.
[17] 石东源,蔡德福,陈金富,等.计及输入变量相关性的半不变量法概率潮流计算[J].中国电机工程学报,2012,32(8):104-113.
[18] 曹一家,王光增,曹丽华,等.基于潮流熵的复杂电网自组织临界态判断模型[J].电力系统自动化,2011,35(7):1-6.
[19] 刘宝碇,赵瑞清,王纲.不确定规划及应用[M].北京:清华大学出版社,2003.
[20] 陈伟,石晶,任丽,等.微网中的多元复合储能技术[J].电力系统自动化,2010,34(1):112-115.
[21] 冯士刚,艾芊.带精英策略的快速非支配排序遗传算法在多目标无功优化中的应用[J].电工技术学报,2007,22(12):146-151.