Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

基于改进蚁群算法的梯级水电站优化调度及竞价研究

来源:电工电气发布时间:2016-04-06 14:06 浏览次数:1

基于改进蚁群算法的梯级水电站优化调度及竞价研究 

吕品 
(三峡大学 电气与新能源学院,湖北 宜昌 443000) 
 

摘 要: 针对电力市场中竞价制度和梯级水电站的特点,提出把梯级水电站作为一个发电实体在电力市场中统一竞价,并整体安排各级水电站的生产调度运行。考虑多个约束条件,建立了一个合理的梯级水电站调度模型。提出引用Metropolis 判据改进蚁群算法,修正了蚁群算法在复杂多维问题中的停滞问题,并用此算法求解调度模型。通过对松江河梯级水电站进行实例仿真,验证了改进后的蚁群算法的准确性,并指出了该调度模型的优点与不足。
关键词: 梯级水电站;优化调度;改进蚁群算法;Metropolis 判据
中图分类号:TM622 文献标识码:A 文章编号:1007-3175(2014)11-0047-05


Research of Optimal Dispatching and Bidding for Cascade Hydropower Stations Based on Improved Ant Colony Algorithm 

LV Pin 
(Electrical Engineering and New Energy College, China Three Gorges University, Yichang 443000, China) 
 

Abstract: Aiming at the characteristics of bidding institution and cascade hydropower stations, this paper proposed that the cascade hydropower stations were taken as a united generation company in electricity market for optimal dispatching and profits. Multiple constraints were considered to build a reasonable dispatching model for cascade hydropower stations in electricity market. The criterion of Metropolis was quoted into the ant colony algorithm for correcting the problem of stagnating in ant colony algorithm and the algorithm was used for dispatching model. Via the example simulation of Songjianghe cascade hydropower stations, accuracy of the improved ant colony algorithm was verified and the advantages and disadvantages of the constructed models were pointed out.
              Key words: cascade hydropower stations; optimal dispatching; improved ant colony algorithm; Metropolis criterion


参考文献
[1] 吕清洁.含风/水/火电的电力系统动态经济调度和节能调度[D].重庆:重庆大学,2012.
[2] 施展武,罗云霞,邱家驹. 基于Matlab 遗传算法工具箱的梯级水电站优化调度[J]. 电力自动化设备,2005,25(11):30-33.
[3] 杨春花,王先甲,陈炯宏.基于发电权交易的梯级水电站中长期优化调度[J].武汉大学学报:工学版,2010,43(1):72-76.
[4] 梁伟,陈守伦,何春元,等.基于混沌优化算法的梯级水电站水库优化调度[J]. 水电能源科学,2008,26(1):63-66.
[5] Basu M. An interactive fuzzy satisfying method based on evolutionary programming technique for multi-objective short-term hydrothermal scheduling[J].Electric Power Systems Research, 2004, 69(2):277-285.
[6] Kazarils S A, Bakirtzis A G, Petridis V.A genetic algorithm solution to the unit commitment problem[J].IEEE Transactions on Power Systems, 1996, 11(1):802-806.
[7] 付春梅.水火电优化调度建模与算法研究[D].哈尔滨:哈尔滨工业大学,2011.
[8] 吴至复,曾鸣,刘宝华,等. 电力市场中的水火电优化调度模型及其应用[J]. 电网技术,2006,30(15):45-49.
[9] 张强.考虑机组组合和电网安全约束的电力系统水火协调[D].南宁:广西大学,2012.
[10] 韦化,李滨,杭乃善,等.大规模水-火电力系统最优潮流的现代内点算法实现[J].中国电机工程学报,2003,23(6):13-18.
[11] 华扬松.火电厂实时发电成本分析与辅助报价研究[D].北京:华北电力大学,2006.