基于最小二乘支持向量机的变压器故障诊断
王逸萍
(江苏省电力公司检修分公司,江苏 无锡 214001)
摘 要:介绍了一种基于最小二乘支持向量机(LS-SVM) 的电力变压器故障诊断方法,将样本数据进行归一化处理,以绝缘油中特征气体种类及其含量为依据建立变压器故障诊断LS-SVM 模型,对模型中的核参数σ 与惩罚参数C 进行优化,并将测试样本输入训练好的LS-SVM 模型,得到诊断结果。实例结果分析表明,LS-SVM 将原先的非线性问题转化为求解线性问题,即使在小训练样本的前提下,也能获得更为准确的诊断结果。
关键词:电力变压器;故障诊断;最小二乘支持向量机;核函数;气体分析
中图分类号:TM41 文献标识码:A 文章编号:1007-3175(2016)06-0024-04
Fault Diagnosis of Power Transformers Based on
Least Squares Support Vector Machine
WANG Yi-ping
(Jiangsu Electric Power Maintenance Branch Company, Wuxi 214001, China)
Abstract: Introduction was made to a kind of power transformer fault diagnosis method based on least squares support vector machine (LS-SVM). The sample data was carried out normalization processing. On the basis of the characteristic gas type and its content of the insulating oil, this paper established the LS-SVM model of transformer fault diagnose and optimized the nuclear parameter σ and penalty parameter C in the model, putting the test sample into the trained LS-SVM model to obtain the diagnosis results. Experimental results analysis shows that LS-SVM changes the original nonlinear problem into the solution of linear problem and the more accurate diagnosis result could be obtained even under the conditions of small training sample.
Key words: power transformer; fault diagnosis; least squares support vector machine; kernel function; gas analysis
参考文献
[1] 周婧婧. 基于故障树分析的电力变压器可靠性评估方法研究[D]. 重庆:重庆大学,2009.
[2] 杨志超,张成龙,吴奕,等. 基于粗糙集和RBF神经网络的变压器故障诊断方法研究[J]. 电测与仪表,2014,51(21):34-39.
[3] 张启清. 电力变压器故障诊断专家系统的研究[D].重庆:重庆大学,2002.
[4] NELLO Cristianimi, JOHN Shawe-Taylor.An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M].New York:Cambridge University Press,2000.
[5] 武中利. 电力变压器故障诊断新方法研究[D]. 北京:华北电力大学,2013.
[6] 尹金良,朱永利. 支持向量机参数优化及其在变压器故障诊断中的应用[J]. 电测与仪表,2012,49(5):11-16.
[7] 郑含博. 电力变压器状态评估及故障诊断方法研究[D]. 重庆:重庆大学,2012.
[8] 孙才新,陈伟根,李检,等. 电气设备油中气体在线监测与故障诊断技术[M]. 北京:科学出版社,2003.