基于特征分类算法的GIS故障诊断方法研究
张湛1,杨光2,黄志2,张峰2,张士文2
(1 中国电力工程顾问集团中南电力设计院, 湖北 武汉 430071; 2 上海交通大学 电子信息与电气工程学院, 上海 200240)
摘 要:针对高压断路器操动机构故障监测问题,提出了一种基于核主成分分析和支持向量机的气体绝缘开关故障检测方法,利用核主成分分析对分( 合) 闸线圈电流波形的特征值进行降维,然后将降维后的特征值输入多类分类SVM 进行故障诊断和分类。通过实际样本的实验,验证了算法的准确性和可靠性,并通过参数讨论,测算了最优的分类参数。
关键词:故障检测,特征分类;气体绝缘金属封闭开关;核主成分分析;支持向量机
中图分类号:TM561 文献标识码:A 文章编号:1007-3175(2016)11-0016-05
Gas Insulated Switch Fault Diagnosis Method Research Based on
Characteristic Classification Algorithm
ZHANG Zhan1, YANG Guang2, HUANG Zhi2, ZHANG Feng2, ZHANG Shi-wen2
(1 Central Southern China Electric Power Design Institute of China Power Engineering Consulting Group, Wuhan 430071,China;
2 School of Electrical Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)
Abstract: In allusion to the fault monitoring problem of high voltage circuit breaker operating mechanism, this paper raised a kind of fault detection method for gas insulated switch (GIS) based on kernel principal component analysis (KPCA) and support vector machine (SVM). The KPCA algorithm was used to reduce dimension of eigenvalue of coil current waveform, which was input multi-classified SVM. The practical sample experiment verifies the correctness and reliability of the algorithm, and the discussion is proposed to calculate the optimal parameter.
Key words: failure detection; characteristic classification; gas insulated switch (GIS); kernel principal component analysis (KPCA); support
vector machine (SVM)
参考文献
[1] 刘亚芳. 国内外高压S F6 断路器运行状况及维修策略综述[J]. 电力设备,2002,3(1):26-29.
[2] 李娟,焦邵华. 基于D S P 的高压断路器状态在线监测装置[J]. 电力自动化设备,2004,24(8):44-47.
[3] 张弛. 高压断路器在线监测与故障诊断系统研究[D]. 北京:北京交通大学,2007.
[4] 曹飞. 断路器在线监测数据分析的研究与应用[D].杭州:浙江大学,2008.
[5] 汪涛. 基于小波分析的断路器动特性在线监测系统的研究与设计[D]. 西安:西安电子科技大学,2010.
[6] 郭武,戴礼荣,王仁华. 采用主成分分析的特征映射[J]. 自动化学报,2008,34(8):876-879.
[7] SCH C, LAPTEV I, CAPUTO B.Recognizing Human Actions: A Local SVM Approach[C]// Proceedings of the Pattern Recognition, 17th International Conference on (ICPR'04)IEEE Computer Society,2004(3):32-36.
[8] RAKOTOMAMONJY A.Variable selection using SVM based criteria[J].Journal of Machine Learning Research,2003,3(7/8):1357-1370.
[9] CHERKASSKY V, MA Y.Practical selection of SVM parameters and noise estimation for SVM regression[J].Neural Networks the Official
Journal of the International Neural Network Society,2004,17(1):113-126.
[10] RAZI-KAZEMI A A, Vakilian M, Niayesh K, et al. Circuit-Breaker Automated Failure Tracking Based on Coil Current Signature[J].IEEE Transactions on Power Delivery,2014,29(1):283-290.
[11] NI J, ZHANG C, YANG S X.An adaptive approach based on KPCA and SVM for real-time fault diagnosis of HVCBs[J].IEEE Transactions on
Power Delivery,2011,26(3):1960-1971.