Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

330 kV高压输电线路对人体稳态电击的研究

来源:电工电气发布时间:2017-03-24 10:24 浏览次数:3
330 kV高压输电线路对人体稳态电击的研究
 
吴健1,金宇2,李鸣霄2,耿明昕1,申晨1
(1 国网陕西省电力公司电力科学研究院,陕西 西安 710001;2 西安交通大学 电气工程学院,陕西 西安 710049)
 
    摘 要:利用有限元法分析人体站在330 kV 输电线路下方的稳态电击情况,仿真计算了试验线路下方铁棒的感应电流,将实际测量结果与有限元计算结果进行对比,误差仅为7.09%,验证了该方法的合理性。在有限元分析软件COMSOL Multiphysics 建立330 kV 输电线路的三维模型和简化的人体三维模型,计算了人体感应电位、感应电流密度和表面畸变场强的分布,并定量地分析了绝缘状态、线路高度以及人体在线下的位置对场量的影响。
    关键词:输电线路;工频电场;有限元法;人体
    中图分类号:TM726     文献标识码:A     文章编号:1007-3175(2017)03-0006-06
 
Research of Steady Electric Shock on Human Body Under 330 kV Transmission Lines
 
WU Jian1, JIN Yu2, LI Ming-xiao2, GENG Ming-xin1, SHEN Chen1
(1 State Grid Shaanxi Electric Power Company Electric Power Research Institute, Xi’an 710001, China;
2 School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)
 
    Abstract: The finite element method was used to calculate the steady electric shock on human body under the 330 kV transmission line. The simulation calculated the induced current of iron bar under the test line. By comparing the experimental result with the finite element calculation result, the error was just 7.09%, which verified the rationality of this method. This paper established a three-dimensional finite element model of transmission lines and a simplified human body model in COMSOL Multiphysics. This paper calculated the induced potential, induced current density and distorted electrical field strength distribution over human body surface and quantificationally analyzed the state of insulation, height of transmission lines and the position impacts of human body below the line on the field quantity.
    Key words: transmission line; power frequency electric field; finite element method; human body
 
参考文献
[1] 刘振亚. 中国电力与能源[M]. 北京:中国电力出版社,2012.
[2] 李秀英. 交流输电线下人体暂态电击模型和实验研究[D]. 保定:华北电力大学,2013.
[3] KRAJEWSKI W. Numerical assessment of electromagnetic exposure during live-line works on high-voltage objects[J].IET Science Measurement Technology,2009,3(1):27-38.
[4] KAVYA M, YASHODHARA B, ARUNACHALAM V, et al. Biological effects of electromagnetic interference of high voltage transmission Lines on human body[C]//International Conference on Power Signals Control and Computations,2014,8(10):1-6.
[5] TALAAT M.Charge simulation modeling for calculation of electrically induced human body currents[C]//Electrical Insulation and Dielectric Phenomena 2010 Annual Report Conference,2010:1-4.
[6] 王建华,文武,阮江军,等. UHV交变电场在人体中感应电流计算分析[J]. 高电压技术,2007,33(5):46-49.
[7] 陈磊. 高压输电线路下工频电场效应研究[D]. 上海:上海电力学院,2013.
[8] 胡宇. 超高压输电线环境中人体电磁场分析[D].沈阳:沈阳工业大学,2003.
[9] 倪光正,杨仕友,邱捷. 工程电磁场数值计算[M].2 版.北京:机械工业出版社,2010.
[10] 王湛娴. 生物组织电参数的微波测量方法研究及应用[D]. 南京:南京理工大学,2009.
[11] 晋旭东. 电网电磁环境评价指标及预测模型的研究[D]. 保定:华北电力大学,2007.
[12] 袁国祥. 低频电流的人体效应研究与应用[D]. 武汉:华中师范大学,2006.
[13] 胡白雪. 超高压及特高压输电线路的电磁环境研究[D]. 杭州:浙江大学,2006.