基于引入禁忌表的改进粒子群算法的多目标无功优化研究
姚亚鹏1,刘崇新1,徐文文2
(1 西安交通大学 电气工程学院,陕西 西安 710049;2 陕西省地方电力设计有限公司,陕西 西安 710065)
摘 要:针对无功优化面临的实际问题,建立了融合有功网损、节点电压偏移和无功补偿成本的多目标优化模型。在传统粒子群算法(PSO) 的基础上,动态调节惯性权重并引入禁忌搜索算法(TS) 的禁忌表,设置灵活存储结构和禁忌准则,保证有效搜索多样化,弥补了全局寻优能力不足、易陷入局部最优的缺点。IEEE14 节点系统的仿真结果表明提出的方法具有较好的全局寻优能力和搜索性能。
关键词:无功优化;粒子群算法;禁忌表;多目标优化
中图分类号:TM714.3 文献标识码:A 文章编号:1007-3175(2017)05-0005-05
Probe into Multi-Objective Reactive Power Optimization Based on Modified Particle Swarm Algorithm with Taboo List
YAO Ya-peng1, LIU Chong-xin1, XU Wen-wen2
(1 School of Electrical Engineering, Xi’an Jiaotong University, Xi'an 710049, China;
2 Shanxi Regional Electric Power Design Co., Ltd, Xi'an 710065, China)
Abstract: According to the practical issue of reactive power optimization, this paper established a multi-objective optimization model mixed together with the active power transmission losses, the node voltage deviation and the reactive compensation cost. Based on the traditional particle swarm algorithm, the inertia weight was adaptively adjusted according to the fitness and the taboo list of taboo search algorithm was introduced to set up the flexible storage structure and taboo criterion, so as to ensure the searching effectively, which makes up for the deficiency of the global optimization performance and the defect of falling into local optimum. The simulation result of IEEE14 node system shows that the method mentioned above has better global optimization capacity and searching performance.
Key words: reactive power optimization; particle swarm algorithm; taboo list; multi-objective optimization
参考文献
[1] 党存禄,张宁,邵冲. 电力系统无功优化研究综述[J]. 电网与清洁能源,2014,30(1):8-14.
[2] DAI C, CHEN W, ZH U Y, ZHANG X. Seeker optimization algorithm for optimal reactive power dispatch[J].IEEE Transactions on Power Systems,2009,24(3):1218-1231.
[3] 杨胡萍,李威仁,左士伟,等. 基于改进遗传算法的电力系统无功优化[J]. 郑州大学学报( 工学版),2015,36(6):66-68.
[4] 孙蕾,魏宇存,刘崇新,等. 引入改进tent映射的遗传禁忌混合算法及其在地区无功优化中的应用[J]. 陕西电力,2012,40(11):1-7.
[5] 邓长虹,马庆,肖永,等. 基于自学习迁移粒子群算法及高斯罚函数的无功优化方法[J]. 电网技术,2014,38(12):3341-3346.
[6] 陈前宇,陈维荣,戴朝华,等. 基于改进PSO算法的电力系统无功优化[J]. 电力系统及其自动化学报,2014,26(2):8-13.
[7] 刘述奎,陈维荣,李奇,等. 基于随机聚焦粒子群算法的电力系统无功优化[J]. 电网技术,2008,32(S2):8-11.
[8] 吴肖锋,仲伟坤,范华君. 基于禁忌搜索- 免疫粒子群算法的无功优化[J]. 黑龙江电力,2013,35(3):211-214.
[9] 魏宇存, 贺晓, 周建, 等. 基于混沌粒子群算法的多目标无功优化研究[J]. 陕西电力,2013,41(9):10-15.
[10] STEPHEN D S, SOMASUNDARAM P.Solution for Multi-Objective Reactive Power Optimization Using Fuzzy Guided Tabu Search[J].Arabian Journal for Science and Engineering,2012,37(8):2231-2241.
[11] 刘杨,田学锋,詹志辉. 粒子群优化算法惯量权重控制方法的研究[J]. 南京大学学报( 自然科学版),2011,47(4):364-371.
[12] 葛少云,刘自发,余贻鑫. 基于改进禁忌搜索的配电网重构[J]. 电网技术,2004,28(23):22-26.