基于数据驱动的发电设备在线预警研究
黄一枫,茅大钧
(上海电力学院 自动化工程学院,上海 200090)
摘 要:针对发电设备故障频发的情况,基于现场实时数据建立设备正常的运行状态模型并结合PI实时数据库构建了发电机组及关键设备的在线预警系统,对所采集的数据进行处理、分析、预测,来判断设备的运行状态并帮助运行人员确认设备是否需要检修。通过电厂实际运用表明,该系统大幅提高了设备运行的安全水平和效率,降低了运行维护成本。
关键词:数据驱动;在线预警;发电设备
中图分类号:TM621.3;TP277 文献标识码:A 文章编号:1007-3175(2017)07-0015-05
Research on Online Early Warning of Power Generating Equipment Based on Data Driven
HUANG Yi-feng, MAO Da-jun
(College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China)
Abstract: In allusion to the circumstance of power generating equipment faults taking place frequently, the normal operational state model was established based on the site real-time data, and combined with the PI real-time database, the online early warning system of generator set and key equipment was constructed to carry out disposal, analysis and prediction to judge the equipment operating state and to help the operator determine whether to overhaul the equipment. The practical application of power plant shows that this system drastically improves the safety level and efficiency of equipment operation and reduces the operating maintenance cost.
Key words: data driven; online early warning; power generating equipment
参考文献
[1] 陈世和. 智能电厂的核心技术与理念[C]// 国家智能制造论坛,2016.
[2] 张晋宾,周四维,陆星羽. 智能电厂概念、架构、功能及实施[J]. 中国仪器仪表,2017(4):33-39.
[3] 钟阳. 基于数据统计分析的变桨系统故障预警方法[D]. 北京:华北电力大学,2015.
[4] 赵洪山,连莎莎,邵玲. 基于模型的风电机组变桨距系统故障检测[J]. 电网技术,2015,39(2):440-444.
[5] YANG T S, CHEN B, ZHANG H L, et al.State Trend Prediction of Spacecraft Based on BP Neural Network[C]//International Conference on Measurement,2013,2:809-812.
[6] HUANG Y H, ZHOU X X.Knowledge model for electric power big data based on ontology and semantic web[J].CSEE Journal of Power and Energy Systems,2015,1(1):19-27.
[7] ANGELI C, CHATZINIKOLAOU A.On-line fault detection techniques for technical systems:a survey[J].International Journal of Computer Science & Applications,2004,1(1):12-30.
[8] 徐波,韩学山,李业勇,等. 电力设备机会维修决策模型[J]. 中国电机工程学报,2016,36(23):6379-6388.
[9] 李玉杰. 城郊煤矿机电设备维修管理现状分析与提升对策[D]. 南昌:南昌大学,2016.
[10] 富双进. 电站风机故障预警系统的研究[D]. 保定:华北电力大学,2015.
[11] 王韬. 基于P I 数据库的风电场实时监控系统应用研究[J]. 电气自动化,2016(6):35-37.
[12] 蔡晓洁,杨小柏.PI 实时数据库在信息化系统中的应用[J]. 自动化技术与应用,2016,35(7):161-165.
[13] 郭艳平,颜文俊,包哲静. 风力发电机组在线故障预警与诊断一体化系统设计与应用[J]. 电力系统自动化,2010,34(16):83-86.